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Abstract

The trajectories of idealised (zero-thickness) cosmic strings in 
at space-time

typically contain isolated points, known as cusps, where the local radius of curvature

of the string goes to zero. It has long been known that the weak-�eld approximation

breaks down in the vicinity of a cusp, leading to a beam of gravitational radiation

directed parallel to the motion of the cusp. In this paper I show that the weak-

�eld approximation also breaks down in a region with radius of order (G�)

2

L and

enclosed mass of order (G�)M , where L is the length of the string, M is its total

mass, and � is its mass per unit length. I further indicate how a self-consistent

analysis of the e�ects of a cusp within the full framework of general relativity might

be performed.

1. Introduction

Cosmic strings are long �laments of false vacuum energy that may have formed during the

strong-electroweak phase transition, which is thought to have occurred some 10

�35

seconds

after the Big Bang. The likely cosmogonic e�ects of cosmic strings were �rst examined in

the early 1980s, and the success of the earliest simulations encouraged the belief that string

loops could help explain the formation of large-scale structure in the Universe. Since then,

more detailed numerical work has largely discredited the assumptions which underpinned

the simplest and most convincing of the string-seeded cosmologies, and nowadays there is

very little active work being done in the area. Nonetheless, cosmic strings are not entirely

devoid of interest. Their gravitational properties, in particular, are rich and counter-

intuitive, and they have helped shed some light on some of the more obscure aspects of

general relativity.

Strictly speaking, cosmic strings are conventionally modelled as vortex solutions of the

Einstein-Higgs-Yang-Mills �eld equations, with action
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where � is a complex scalar and A
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a real vector �eld, F
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is the elec-

tromagnetic tensor, e, � and � are adjustable constants, and g is the determinant of the

background 4-metric g

��

. Vortices of this type are often referred to as \local strings". If

the constants are chosen to correspond to a Grand Uni�ed phase transition, the resulting
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cosmic string has a thickness of about 10

�30

cm and a mass per unit length � of about

10

22

g/cm.

Since the thickness of a local string is much smaller than any length scales of astro-

physical interest, it is common to approximate cosmic strings as line singularities in space,

giving rise to what are known as \idealised" cosmic strings. The history of an idealised

cosmic string is a timelike 2-surface (or \world sheet") with parametric representation

x

�

= X

�

(�

A

),

where the index A runs from 0 to 1. The 2-metric induced on the surface is:
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= g
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�

;

A

X

�

;

B

and is assumed to have signature (+,-). F�orster [1] has shown that, if the thickness of the

vortex is small in comparison with the local radius of curvature, then the Nielsen-Olesen

action [1] reduces to the Nambu-Goto action:
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Z

d
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�
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�
, (2)

where 
 = det(


AB

) and the constant � can be interpreted as the mass per unit length of

the string.

The equations of motion corresponding to the idealised action [2] are:
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respectively. Also, the action

[2] gives rise, in the usual way, to a distributional energy-momentum tensor of the form:
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The idealised string is therefore characterised by a constant energy per unit length and a

tension of equal magnitude �.

In 
at space-time, the equations of motion [3] can in principle be solved exactly. A

generic feature of almost all loop solutions in 
at space-time is that at certain points

on the world sheet the tangent 2-space is degenerate. In physical terms, the string is

instantaneously travelling at the speed of light at such a point: the local radius of cur-

vature is then zero, and the string forms what is known as a \cusp". Cusps can have

dramatic e�ects on the gravitational properties of a cosmic string. In the weak-�eld ap-

proximation, the gravitational �eld diverges in the neighbourhood of a cusp, and there is

an additional divergent e�ect (sometimes referred to as \gravitational beaming") on the

null line projected forward from the cusp in the direction of its motion.
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In view of the breakdown of the weak-�eld approximation, and also the fact that the

approximations leading to the Nambu-Goto action [2] are inoperative near a cusp, it has

been suggested that �eld-theoretic and gravitational e�ects { either separately or together

{ will act to suppress the formation of cusps. In this paper I review what little is known

about the gravitational aspect of this problem. In particular, I examine in some detail

the gravitational properties of cusps at the level of the weak-�eld approximation, and

also suggest how the problem of gravitational back-reaction might be addressed in a fully

self-consistent manner.

2. The dynamics of strings in 
at space-time

In Minkowski space-time, it is always possible to choose the world-sheet coordinates �

0

= �

and �

1

= � so that they satisfy the \standard gauge" conditions:

X;

2

�

+X;

2

�

= 0 (5)

and

X;

�

�X;

�

= 0. (6)

The equations of motion [3] then reduce to the 2-dimensional wave equation:
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with general solution

X

�

= [�;

1

2

fa(� + �) + b(� � �)g], (8)

where a and b are 3-vector functions which are arbitrary except for the gauge constraints

ja

0

j = jb

0

j = 1,

which follow directly from [5] and [6]. [Note that in deriving the solution [8] residual

gauge freedom was used to set � equal to the Minkowski time coordinate x

0

.]

The induced 2-metric corresponding to the general solution [8] is:
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is divergent at a cusp.

A simple method for analysing the dynamics of a string in 
at space-time has been

developed by Kibble and Turok [2, 3]. Since a

0

and b

0

are unit vectors, they separately

trace out curves on the surface of the unit sphere as � and � vary. A cusp will occur

whenever the two curves cross.

If the string forms a closed loop, the position vector X

�

and the tangent vectors X

�

;

�

and X

�

;

�

are periodic functions of the spacelike coordinate � with some period L. This

in turn means that a

0

and b

0

are also periodic with period L, and so trace out closed

curves on the unit sphere. Moreover, since a and b are periodic, the centroids of a

0

and b

0

must lie at the origin of the sphere, and so the curves cannot stay in a single hemisphere.

Unless the curves traced out by a

0

and b

0

are relatively convoluted they will cross at least

twice, giving rise to at least two recurrent cusps during each period of oscillation of the

string.

Cusps are therefore in some sense generic to string loops. Indeed, it has even been

suggested that the e�ect of gravitational radiation from a string loop would be to sup-

press the higher-order harmonics in the curves traced out by a

0

and b

0

and so enhance

the possibility of cusp formation. However, this argument is somewhat tendentious, as

gravitational radiation is typically generated by regions of high intrinsic curvature (as, for

example, near cusps) rather than by harmonics on the Kibble-Turok sphere.

3. Cusps in the weak-�eld approximation

In the harmonic gauge, the deviation h

��

of the metric tensor g

��

from the Minkowski

metric �

��

is, to linear order, the retarded potential solution of the weak-�eld Einstein

equations:

h

��

(t;x) = 4G

Z

d

3

x

0

jx� x

0

j
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S

��

(t

0

;x

0
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where the source function S

��

is a linear functional of the energy-momentum tensor T

��

:

S

��

= T

��

�

1

2

�

��

T

�

�

and t

0

= t� jx� x

0

j is the retarded time.

In the case of an idealised cosmic string satisfying the 
at-space equation of motion

[7], the expression [4] for the energy-momentum tensor gives:

S
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0
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,

X

�

(�; �) = [�;q(�; �)] is the position vector [8] on the world sheet, an overdot denotes

@=@� , a prime denotes @=@�, and

q(�; �) =

1

2

[a(� + �) + b(� � �)].
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If the expression [11] for S

��

is substituted into [10], the retarded potential becomes:

h

��

(t;x) = 4G�

Z

d� (1� n � _q)

�1

jx� qj

�1

F

��

(�; �), (12)

where

n = jx� qj

�1

(x� q)

is the unit vector from the source point q(�; �) on the string to the �eld point x, and the

parametric time � is a function of t, x and � given implicitly by the equation

� = t� jx� q(�; �)j.

Note here that the only points which contribute to h

��

(t;x) are those on the intersection

of the world sheet with the backward light cone of [t;x]. The additional factor (1�n� _q)

�1

appears in [12] because the retarded time t

0

in the distributional factor �

3

(x

0

� q(t

0

; �))

in [11] is itself a function of x

0

.

At a cusp, _q

2

= 1 and F

��

=

_

X

�

_

X

�

, where

_

X

�

is null. Hence, the integrand in the

expression [12] for the retarded potential h

��

has a pole when n � _q = 1; that is, when

the �eld point x lies on the forward null cone of the cusp in the direction of the cusp's

instantaneous velocity. Field points at which n � _q = 1 de�ne what is sometimes called

the \gravitational beam" of the cusp. Near the beam, integration of equation [12] gives:

h

��

(t;x) � G�

_

X

�

_

X

�

jx� q

0

j

�1

(t� jx� q

0

j)

�1=3

R

4=3

, (13)

where q

0

is the position vector of the cusp, and

R = ja

00

0

+ b

00

0

j

�1

is a length scale associated with the cusp, and is typically of the order of the length L

of the loop. The expression [13] for the potential h

��

near the beam was �rst derived

by Vachaspati [4], and for an asymmetric loop suggests that the beaming of gravitational

radiation from cusps would quickly accelerate the loop to relativistic velocities. In fact, at

the level of the weak-�eld approximation, gravitational beaming from cusps accounts for a

large fraction of the total gravitational energy radiated by loops in numerical simulations

of the evolution of string networks [5].

Less well-advertised than gravitational beaming is the fact that the weak-�eld approx-

imation also breaks down at points on the forward light cone of a cusp away from its

beam. If jx� q

0

j is small but n � _q

0

� 1 then equation [12] gives:

h
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(t;x) � G�

_
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�

_
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�

Z

d�

jx� q

0

j � �

� G�

_

X

�

_

X

�

jx� q

0

j

�1=2

R

1=2

. (14)

In other words, if the cusp is approached from any direction other than along the beam,

the potential diverges as r

�1=2

, where r is the spatial distance to the cusp. This indicates

that the weak-�eld approximation breaks down not only near the beam but also inside a

radius r � (G�)

2

R about the cusp (where G� � 10

�6

for a GUT string).
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The result embodied in equation [14] can be derived in a more heuristic fashion, as

follows. If the cusp lies at � = � = 0 then the source points near the cusp have the

parametric form:

q(�; �) � q

0

+ _q

0

� +

1

4

[a

00

0

(� + �)

2

+ b

00

0

(� � �)

2

],

and so at time � = 0

jq� q

0

j �

1

4

R

�1

�

2

.

Since � is the rest mass per unit length of the string, and � in the standard gauge measures

the proper length of the string, the mass M inside a radius jq� q

0

j = r is:

M � 2� j�j � 4� (rR)

1=2

and hence

GM =r � G� (R = r)

1=2

. (15)

According to [15], the potential again diverges as r

�1=2

and the weak-�eld approxima-

tion breaks down when r � (G�)

2

R. Furthermore, the mass M

C

inside the strong-�eld

region is predicted to be

M

C

� 4G�

2

R � 4G�M

S

,

where M

S

= �L � �R is the total mass of the string. For a GUT string, therefore, about

10

�6

of the total mass of the string would be contained in the near-cusp region. Since the

total mass of a string loop with length of order of the current horizon radius would be

comparable to the mass of a large galaxy, the cusp mass M

C

is not necessarily negligible.

The breakdown of the weak-�eld approximation near a cusp probably indicates that

something more complex than mere gravitational beaming occurs there. On the face of

it, there would seem to be two alternative fates for a cusp on a cosmic string: either

higher-order corrections to the Nambu-Goto action [2] suppress the formation of a full

cusp, with the result that the gravitational �eld of the string departs only minimally

from the weak-�eld approximation; or the cusp is unstable to strong-�eld e�ects, and

fundamentally new features appear (including perhaps the collapse of the cusp to form a

black hole).

Unfortunately, neither alternative can at present be ruled out. For example, if �eld-

theoretic e�ects were to act to limit the local Lorentz factor of the string to a maximum

value 
 then an analysis similar to that which led to equation [15] indicates that the

potential at a distance r from a source point with Lorentz factor 
 would be:

GM =r � G� (R = r)

1=2

[1� 


�1

(R= r)

1=2

]. (16)

According to [16], the weak-�eld approximation will still break down when r � (G�)

2

R,

provided that 
 is larger than (G�)

�1

� 10

6

. However, it is precisely for Lorentz factors

of the order of (G�)

�1

that the zero-thickness idealisation central to the derivation of the

Nambu-Goto action breaks down.

In the absence of any de�nite information about the consequences of �eld-theoretic

corrections for the formation of cusps, it is natural to proceed on the assumption that they
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do form, and to attempt to calculate their gravitational e�ects within the full framework

of general relativity. This is a complex task in itself, and at present it is only possible to

indicate how the calculation might be performed.

4. Cusps in general relativity

There are very few known exact gravitating solutions with the string energy-

momentum tensor [4]. Those solutions that have been published invariably describe space-

times with a high degree of symmetry. They include the basic straight-string metric �rst

derived (independently) by Gott and Hiscock in 1984 [6, 7]:

ds

2

= dt

2

� dz

2

� dr

2

� (1 � 4G�)

2

r

2

d�

2

(17)

(where t, r, � and z are standard cylindrical polar coordinates on <

4

), as well as elab-

orations which describe a straight string interacting with plane-fronted gravitational (or

\travelling") waves [8], with cylindrical gravitational waves [9, 10, 11, 12, 13, 14], and

with a non-rotating black hole [15]. In fact, the only known strong-�eld result dealing

with a string loop (rather than an in�nite straight string) is Hawking's 1990 proof that

a circular loop of cosmic string will collapse to form a black hole with a loss of at most

29% of its energy [16].

Furthermore, the viability of the distributional description of a cosmic string embodied

in the energy-momentum tensor [4] has been strongly called into question by Geroch and

Traschen [17]. The objections they level against the distributional description are many

and varied, and it is not my intention to discuss them in detail here. However, the salient

points in their argument are as follows:

1. The Einstein equations are non-linear equations in the metric tensor g

ij

and therefore

do not admit a natural interpretation as equations on distributions. Of course, in

practice it is not the metric tensor that is a pure distribution, but rather the Riemann

curvature tensor R

ijkl

. Geroch and Traschen de�ne a class of \regular metrics"

which they feel is the broadest possible class of metrics admitting distributional

curvature. It turns out that the metric [17] due to an in�nite straight string in

the distributional approximation is not regular. Furthermore, Geroch and Traschen

claim to have proved that no regular metric exists on a 4-dimensional spacetime

with curvature concentrated on surfaces of dimension 2 or smaller. They therefore

conclude that it is doubtful that cosmic strings can meaningfully be described in

terms of distributions.

2. There is little point in replacing a thin source of stress-energy such as a cosmic

string with a source concentrated on some suitably-chosen surface unless there is a

well-de�ned relationship between the original source and its distributional approx-

imation. Gott [6], Hiscock [7] and Linet [18] have constructed families of metrics

describing gravitating cylinders that reduce to the standard distributional string

metric in the limit of zero radius, and in each case there is a simple linear relation-

ship between the mass per unit length of the cylinders and the angle de�cit induced
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by the distribution. Yet all of these solutions satisfy a specialised equation of state,

and Geroch and Traschen rightly point out that small deviations in the equation of

state typically lead to a much more complicated relationship between the mass per

unit length and the angle de�cit. Also, in the absence of isometries (as for example

if the string is curved) it is not clear that there exists a suitable relationship between

source and �eld at all, as the Killing �elds used in de�ning the mass per unit length

and the angle de�cit are no longer available.

3. An even more serious objection relates to the locally-
at nature of the metric ex-

terior to an in�nite straight string in the distributional approximation. The class

of cylindrically-symmetric vacuum metrics forms a two-parameter family (the Levi-

Civita family), and the standard distributional string metric [17] �lls only a one-

parameter subclass. Again, Geroch and Traschen point out that a small deviation

in the equation of state of the source 
uid can generate an exterior metric which is

not locally 
at and has quite a di�erent asymptotic structure.

I have attempted to rebut these objections in detail elsewhere [19]. The most important

points to note are that:

� the straight string metric [17] does have a well-de�ned distributional Einstein tensor

R

ij

�

1

2

Rg

ij

, even though it does not belong to Geroch and Traschen's class of

\regular metrics";

� the metric [17] forms a very special subclass of the Levi-Civita family in the sense

that any continuous sequence of static cylinders of perfect 
uid with bounded energy

per unit length will converge to [17] in the limit as the outer radius of the cylinders

goes to zero; and

� even in the absence of Killing �elds it is possible to de�ne the angle de�cit of a

zero-thickness cosmic string and so (at least locally) relate the gravitational �eld of

a curved string to its rest mass per unit length �.

It is the third point that is relevant to a self-consistent treatment of the gravitational

�eld near a string cusp. It turns out that the angle de�cit �� (as measured by the Gauss-

Bonnet formula) along any closed curve encircling the world sheet of the straight string

metric [17] is extremal if the curve lies entirely within a surface of constant t and z. Hence,

the surfaces of constant t and z can be distinguished in a manner which does not rely on

the existence of Killing �elds. In the case of a curved string, each point p on the world

sheet of the string has associated with it a \normal" surface N

p

, de�ned to be the unique

geodesically-generated spacelike surface through p which extremises the angle de�cit ��.

If the world sheet is parameterised by coordinates �

A

(A = 0; 1) then each point on the

normal surface N

p

out to the local radius of curvature of the string (where the normal

surfaces begin to cross) can be assigned coordinates [�

A

(p); r; �], where r is the geodesic

distance along N

p

from p, and � is an angle coordinate on N

p

.
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If the angle de�cit �� is speci�ed to have the same value (in fact 8�G�) on each of

the normal surfaces, the metric in the neighbourhood of the string world sheet can be

expressed in the 3+1 form:

ds

2

= g

AB

d�

A

d�

B

+ 2 g

A�

�

A

d�+ g

��

d�

2

� dr

2

.

Furthermore, the world sheet parameters (�

0

; �

1

) = (�; �) can always be chosen so that

g

AB

= � �

AB

= �diag(1;�1)

on the world sheet, where � is some undetermined function of � and �.

For small values of the geodesic radius r, the vacuum Einstein equations admit solu-

tions for which the metric functions g

AB

, g

A�

and g

��

are multinomial expansions in r

2

and r

1=�

, where � = 1 � 4G� < 1 is a constant. The leading-order behaviour of these

expansions is as follows:

g

AB

= � [ �

AB

+ (L

AB

cos�+M

AB

sin� ) r

1=�

+(

1

4

R

(2)

�

AB

� �

�1

�

�2

!

A

!

B

) r

2

] +O(r

2+1=�

),

g

A�

= r

2

!

A

+ (2� + 1)

�1

[!

B

(L

BA

cos�+M

BA

sin� )

+�

2

�

�1

(�L

B

A

);

B

sin�� �

2

�

�1

(�M

B

A

);

B

cos� ] r

2+1=�

+O(r

4

)

and

g

��

= ��

2

r

2

( 1 �

1

6

R

(2)

r

2

) +O(r

2+2=�

), (18)

where the twist vector !

A

, the symmetric travelling wave potentials L

AB

and M

AB

, and

the intrinsic curvature function R

(2)

= �

�1

�

AB

(ln�);

AB

are all functions of � and � alone.

Also, the travelling wave potentials satisfy the trace conditions:

�

AB

L

AB

= �

AB

M

AB

= 0.

Details of the derivation of the expansions [18] can be found in [20]. For present

purposes, it seems worthwhile to examine their implications for the behaviour of the

gravitational �eld near a cusp. At a cusp, the intrinsic curvature R

(2)

of the world sheet

diverges, and so the metric expansions are presumably divergent as well. Nonetheless,

it might still be possible to use the expansions to investigate the gravitational �eld in

the vicinity of a spacelike cross-section of the world sheet with high, but �nite, intrinsic

curvature (that is, immediately prior to the formation of a cusp). In particular, I will here

address the question of whether a closed trapped surface forms in the neighbourhood of a

cusp. If so, then the cusp will inevitably give rise to some sort of singularity in the metric

[21].

Consider therefore a closed quasi-spherical surface T on which � is constant, parame-

terised by the equation r = r(�). The future-directed null normals on T have the general

form m

�

� n

�

, where

m

�

= [1� g

��

r

02

; g

��

r

02

; 0; �g

��

r

0

]
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and

n

�

= � [0; r

0

; 0; �1]

with

� =

q

(g

��

r

0

)

2

+ g

��

(1� g

��

r

02

).

Here, r

0

denotes dr=d�.

The surface T will be trapped if the expansion of both the null normals is negative

everywhere on T. This in turn is equivalent to the condition

(h

��

m

�;�

)

2

� (h

��

n

�;�

)

2

> 0, (19)

where h

��

is the projection operator on T. Suppose that a cusp forms on the world

sheet at �

A

= (�; �) = (0; 0). Then for small values of j�j it turns out that � � j�j

2

and R

(2)

� j�j

�4

if the world sheet is adequately described by a 
at-space solution of the

form [8]. If the surface T is chosen so that r(�) � j�j

2

then the product R

(2)

r

2

occurring

in the metric expansions [18] remains bounded. After a somewhat lengthy and tedious

calculation, it can be shown that the terms (h

��

m

�;�

)

2

and (h

��

n

�;�

)

2

appearing in the

trapping condition [19] are both of order r

�3

. At this level of approximation, therefore, it

is not possible to prove or disprove that a closed trapped surface will form. Nonetheless,

the calculation does con�rm that there is a signi�cant deviation from 
at space near a

cusp: for a quasi-spherical surface of constant t in Minkowski space-time, (h

��

m

�;�

)

2

is

identically zero and (h

��

n

�;�

)

2

is typically of order r

�2

.

5. Conclusions

In this paper it has been possible to give only a brief taste of the problems to be faced

in developing a fully self-consistent treatment of the gravitational �eld of a cosmic string,

particularly in the neighbourhood of a cusp. I have shown that the weak-�eld approxi-

mation breaks down everywhere in the vicinity of a cusp rather than (as was previously

thought) just along the beam. This breakdown, it is true, is a weak one, in the sense that

the gravitational potential diverges as r

�1=2

, but for a GUT string the region in which

strong-�eld e�ects appear will typically have a radius of the order of 10

�12

times the total

length of the string and an enclosed mass of the order of 10

�6

times the mass of the string,

which is large enough to be cosmogonically interesting.

What happens to a cosmic string when a cusp threatens to form remains an open

question. The two most likely possibilities { namely that �eld-theoretic e�ects suppress

the formation of the cusp and the weak-�eld approximation remains viable, or that strong-

�eld e�ects dominate and lead, perhaps, to the formation of a singularity { cannot at

present be ruled out. However, I am hopeful that the metric expansions [18], or some

elaboration of them, will prove to be useful tools for analysing the gravitational �eld of a

string.
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