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Abstract

The null quasi-spherical gauge is being used to implement the numerical solution

of the full Einstein equations, without any symmetry assumptions. This report de-

scribes the structure of the Einstein equations in the NQS gauge, and then outlines

the numerical algorithm and specialised techniques being employed. Some prelimi-

nary results showing the decay of the Bondi mass of the spacetime are presented.
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1. Introduction

At the University of New England, Andrew Norton and I are working on an ARC-

sponsored project to numerically evolve the Einstein equations, without any symmetry

assumptions. The algorithm exploits an unusual coordinate gauge and this paper de-

scribes the background to the gauge and the structure of the resulting form of the Einstein

equations. Some of the numerical techniques we are developing are also brie
y outlined.

If the spacetime metric admits a group of symmetries (e.g., axial, or spherical), then

it has long been recognised that the Einstein equations can simplify dramatically, par-

ticularly when the problem of numerical simulation is considered. Spherical symmetry

is the most extreme case, since the Einstein equations reduce to a coupled set of ordi-

nary di�erential equations. If we write the spherically symmetric metric in generalised

Schwarzschild coordinates (sometimes called polar coordinates), then the metric may be

parameterised by
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is the standard metric on S
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in polar coordinates (#;'). The full Einstein equations

reduce to three equations for m(r; t) and �(r; t),
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where the subscripts 0; 1 refer to the orthonormal basis
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Note that these (r; t) coordinates can only be used in the region r > 2m(r; t), exterior to

the apparent horizon, where the area function r has spacelike gradient.

Clearly if the source stress energy vanishes then we recover the Schwarzschild space-

time, in accordance with Birkho�'s Theorem | so the value of this formulation is in

studying the e�ects of matter �elds. Thus, we assume that the Einstein equations G

��

=

8��T

��

are satis�ed with stress-energy satisfying the conservation identity r

�

T

��

= 0.

The Bianchi II identities determine the Einstein tensor component G

22

algebraically

(from G

00

; G

01

; G

11

and their �rst derivatives), and provide the compatibility relation

required by the relations (3,4). Consequently it su�ces to solve the radial ordinary di�er-

ential equations (3) and (5) for m; � with source terms determined from T

00

; T

01

, subject

to boundary conditions which ensure that (4) is satis�ed at one point on each radial line

(e.g., at r = 0). The remaining equations are then automatically satis�ed by virtue of the

Bianchi II identities (satis�ed by G

��

since it arises from a metric), and the conservation

law satis�ed by the stress-energy T

��

.

Axially symmetric spacetimes do not admit such dramatic simpli�cations, and conse-

quently their theory and numerical behaviour is not as well understood. There are now

several independent numerical codes for solving the axially symmetric equations, though it

must be said that the main impetus for considering the axial case numerically arises from

the fact that the resulting 2+1 equations are within reach of present computer hardware.

Because axial spacetimes are expected (and experienced) to only provide weak sources

of gravitational radiation, physical interest lies in the more general case of no symmetry;

moreover the axial case leads to considerable numerical problems associated with ensuring

regularity at the polar axes, which have no intrinsic physical or geometric interest.

Thus the major focus now is on solving the full Einstein equations, without any sym-

metry assumption. Our approach is to exploit a coordinate condition motivated by the

simplicity of the spherically symmetric metric (1), coupled with null (characteristic) hy-

persurfaces and a spectral resolution using the Newman-Penrose operator g (eth). The re-

sulting equations are rather simpler than those obtained from other coordinate conditions,

and consequently it becomes practicable to attempt a numerical solution on workstations

rather than supercomputers. The downside of these advantages is that the technique is

restricted to weak and medium strength gravitational �elds | strong gravitational in-

teractions (e.g., binary black hole collapse) must be handled by separate codes, which

ultimately would be matched to our (exterior) solver.
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2. 3D quasi-spherical metrics

The idea underlying the quasi-spherical coordinate choice is most easily seen by con-

sidering the class of 3D Riemannian metrics admitting a foliation by metric 2-spheres,

with strictly monotone area function r. Using the S

2

isometries to introduce the usual

spherical polar coordinates on the 2-spheres r = const:, or by considering perturbations

of the standard R

3

metric in polar coordinates, which preserve the r

2

(d#
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+ sin

2
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2

)

component, we arrive at the metric condition
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where the lapse u = u(r; #; ') and the shift vector �

A

= �

A

(r; #; '), A = 1; 2, parameterise

this class of metrics.

A novel application of this condition is to the construction of 3-metrics of prescribed

scalar curvature, and thereby to the construction of solutions of the Hamiltonian con-

straint. A calculation shows that (7) has scalar curvature R
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where div and � are respectively the standard divergence and Laplacian on S

2

.

Viewing u as an unknown function and R

M

; � as prescribed �elds, this equation gives

a parabolic partial di�erential equation for u on S

2

� R

+

. This PDE was extensively

analysed in [1], which provides general conditions on R

M

; � which ensure global existence

(on S

2

�R

+

) and asymptotic 
atness, together with either regular axis r = 0 or black hole

boundary conditions. Two consequences are the existence of a large class of asymptotically


at Cauchy data for the Einstein equations which are metrically 
at inside a bounded

region, and a simple proof of the Penrose/isoperimetric inequality for black hole data

admitting quasi-spherical foliations satisfying div � = 0.

The construction generalises easily to include the extrinsic curvature (second funda-

mental form) and the full constraint equations | with the momentum constraints having

the form of coupled ODE and S

2

-elliptic equations, with free data and gauge conditions

[2].

3. The null quasi-spherical metric

To extend the quasi-spherical condition to four dimensions, we start by requiring the

spacetime metric to admit a foliation by isometric 2-spheres, as in 3-dimensions. In-

troducing the usual spherical polar coordinates (#;') and letting (x

1

; x

2

) denote any

coordinates on the space of 2-sphere leaves of the foliation, the metric must take the form
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where r = r(x

1

; x

2

) is the area parameter of the 2-spheres, and A

1

; A

2

are two 1-forms,

linear combinations of dx

1

; dx

2

; d#; d'. We now assume that r = x

1

is a coordinate
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function, (i.e., dr 6= 0), call the second orbit coordinate z instead of x

2

, and absorb the

d#; d' cross terms to bring the metric to the form
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;

for some functions A;B;C; �

A
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A

.

We now introduce a complex notation, which foreshadows the use of a modi�cation of

the Newman-Penrose eth operator, and which leads to some simpli�cation in the structure

of the Einstein equations. Thus, de�ne the complex �elds
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and the complex-valued 1-form
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The metric may be written now as
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We may consider � as representing either an S

2

vector �eld, i.e.,

� � �
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sin#
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or as a section of the complex line bundle over S

2

of spin 1.

Now we assume that the coordinate function z determines a null foliation | this

implies that the metric (12) is degenerate (rank 2) modulo dz. Setting dz = 0 in (12) we

see that we must have C = 0, so �nally the null quasi-spherical metric has the form (with

a renaming of the metric parameters A;B for convenience)

ds

2

= �2u dz(dr + v dz) + 2 j� dr + 
 dz + r

�

�j

2

: (13)

To summarise, the NQS coordinates (z; r; #; ') are characterised by the ansatz condi-

tions:

� The 3-surfaces z = const: are null;

� The 2-surfaces (z; r) = const: are isometric to standard 2-spheres of radius r where

r is a coordinate ie. dr 6= 0;

� The coordinates (#;') are standard spherical polar coordinates for these 2-spheres.

Note that (13) has 6 free metric parameters (u; v; �

1

; �

2

; 


1

; 


2

), which corresponds to

the degrees of freedom expected in a general metric with all gauge degeneracy removed

(g

��

has 10 degrees of freedom, with the coordinate/di�eomorphism conditions giving 4

degrees of degeneracy). In contrast, the metric (12) should have one coordinate degree
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of freedom remaining | imposing the null condition on z removes this freedom, but the

form (12) can be constrained in other ways, such as requiring z to be a time coordinate

with level sets having zero mean curvature (maximal slicing gauge), or requiring C = 1

(pseudo-
at gauge).

The residual gauge freedom in the NQS gauge may be understood by studying the

quasi-spheres in the standard cone C

+

0

in Minkowski space. Lorentz transformations

preserve this cone, and either rotate or boost the quasi-spheres. This suggests that there

should be 6 functions of two variables worth of gauge freedom remaining (a Lorentz trans-

formation at each (r; z)), and we will see this degeneracy may be removed by specifying

the ` = 1 spherical harmonic coe�cients of either � or 
.

It is interesting to compare the NQS metric with the Bondi metric form
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where u is now the null coordinate, and deth
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Both Bondi and NQS are based on a null coordinate, but there are signi�cant di�er-

ences, with consequent advantages and disadvantages, in the conditions used to determine

the coordinate foliations on the null surfaces. In Bondi, the angular coordinates (#;')

are determined by radial coordinate lines using the outgoing null geodesics (giving the

(#;') = const: lines) and the asymptotic metric (used to determine the (#;') labelling

on the outgoing geodesics). The radial coordinate is then determined by
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which ensures that the r-level sets have area 4�r

2

. This construction gives a global

character to the coordinates r; #; ', since they are determined using the metric structure

out to in�nity. In contrast, the NQS foliation of the null surfaces does not depend on

the global structure, and it has coordinate freedoms (boosts and rotations of each sphere)

which do not arise in Bondi. In NQS the outgoing null geodesic generator is
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In e�ect, the NQS shear vector � is equivalent to the Bondi-Sachs S
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-metric distortion

components 
; �.

The most signi�cant di�erence from our perspective lies in the angular part of the

metric | unlike the twisted form (15), the NQS angular metric d#
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(acting on a spin-s �eld �), to represent angular derivatives. This sidesteps the usual

problems with instabilities which arise with numerical derivatives at the poles # = 0; �.

4. NQS connection

A natural choice of coframe for the metric (13) is
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(note that the signature has been reversed, to facilitate later comparisons with the usual

NP coe�cients). The corresponding vector frame, using a traditional notation, is
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It is convenient to introduce the auxiliary variables H; J; K; Q; Q
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The resulting connection may be described by either the connection matrix of 1-forms,

or their compacti�ed representation as the Newman-Penrose spin coe�cients

r �

NP

=

�

2

+

1

4

Q

+

r �

NP

= �

�

2

+

1

4

Q

+

r 


NP

=

i

4u

(4� Im(v� � 
)� v curl� + curl 
) +

1

2

u

�1

D

r

v

r �

NP

=

i

4u

(�4�uIm� + u curl�) +

1

2u

D

r

u

r �

NP

= �

uH

2

= �

1

2

(2 � div�)

r �

NP

= g�

r �

NP

=

1

2

Q

�

r �

NP

= 0

r �

NP

= u

�1

K

r �

NP

= �

J

2u

r �

NP

= u

�1

�

gv

r �

NP

=

1

2

Q

+

:

Here � is the connection coe�cient on S
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based on the #;' coordinates.

Note that the NP shear �

NP

has potential �, which suggests that � might be used as

the \seed" of a solution of the Einstein equations. This will be apparent below.

Alternatively, the connection can be given in terms of the connection 1-forms, which
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5. Constraints on the Einstein tensor G

��

The conservation identityr
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= 0 may be viewed either as imposing constraints on the

admissible G

��

, or as a means of reducing the number of Einstein equations to be solved

from 10 to 6. The latter viewpoint was described above when discussing the spherically

symmetric equations, and underlies well-known techniques for simplifying the structure

of the Einstein equations. For example in the Cauchy problem, it su�ces to solve the

dynamical equations G

ij

= 0, 1 � i; j � 3, provided the constraint equations G

0�

= 0,

0 � � � 3, are satis�ed on the initial spacelike hypersurface | the conservation law then

ensures that G

0�

= 0 is satis�ed at all later times, since the quantity C
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a �rst order hyperbolic equation with zero initial conditions [6].

The null characteristic version of this identity is perhaps even more useful, since it

leads to radial ordinary di�erential equations or constraints. If the hypersurface equations
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These equations are easily veri�ed by substituting for the NP Ricci coe�cients �
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with G
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= G

`m

= G
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= G

`n

= 0 into the Bianchi relations (eg. [5, (1.322 k,i,j)]).

If the equations G

nn

= 0 and G

nm

= 0 are then satis�ed on a hypersurface � transverse

to the radial geodesics, e.g., � = fr = 1g, then all the Einstein equations will be satis�ed,
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provided the outgoing geodesics have non-zero expansion, �

NP

6= 0. This is equivalent to

the condition

div � < 2 (28)

which also arose in an analogous situation in the study of 3-dimensional metrics. Ge-

ometrically this corresponds to the requirement that the outgoing geodesics are always

expanding, i.e., there are no conjugate points.

The conditions G
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= 0; G
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= 0 on � will be satis�ed if the hypersurface equations

(24) hold and if the metric parameters are such that � is uniformly either timelike or

spacelike, and the usual hypersurface constraint equations G
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= 0, � = 0; : : : ; 3, are

satis�ed on � where � is the unit (spacelike or timelike) normal vector to �.

6. The hypersurface equations

Bondi and Sachs showed that the hypersurface equations (24) in Bondi coordinates reduce

to a system of coupled ordinary di�erential equations, which involve only derivatives

tangent to the null hypersurfaces. We �nd the same happens in the NQS parameterisation,

and the resulting equations are simple enough (when expressed in the auxiliary variables)

to be analysed directly. A computation using Mathematica (and checked with Reduce)
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These are the primary equations which we solve numerically, although slightly di�erent

parameterisations yield better behaviour near in�nity. The structure of the equations

lends itself to an iterative, ODE-based approach:

1. begin with the primary �eld � on a null hypersurface z = z

0

;

2. solving G

``

= 0 gives H, and thus u = (2� div�)=H;

3. solving G

`m

= 0 gives Q

�

, and thus Q and Q

+

;
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4. solving G

`n

= 0 gives J ;

5. solving G

mm

= 0 gives K.

At this point we notice that the de�nitions of J;K may be rearranged to derive the

equations
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�K; (33)

v =

J � div


2� div�

; (34)

where (33) gives an elliptic system for 
, with source term constructed from J;K. The

ellipticity of (33) requires (in addition to the already assumed (28)) that the multiplier

term

B :=

g�

2� div �

(35)

satisfy jBj

1

< 1; if jBj

1

< 1=

p

3 then it can be shown that (33) has 6-dimensional

kernel, corresponding to a perturbation of the 6 ` = 1 spin 1 spherical harmonics which

form the kernel of the operator 
 7! g
. In this case the corresponding vector �elds

are spanned by the generators of rotations and of conformal motions (boosts) of S

2

, and

form a representation of the Lorentz algebra so(3; 1). In the 3-dimensional Riemannian

setting, this algebra also arises explicitly as the shear vector �elds arising from any quasi-

spherical coordinate system on Euclidean space [3]. We interpret this ambiguity in 
 as

a coordinate freedom, which allows us to specify the \rest frame" at any (r; z).

The formal solution algorithm thus concludes

6. solve the elliptic system (33) for 
 using some condition to �x the kernel term, (e.g.,

set the ` = 1 terms in the spectral expansion of 
 to zero), and use (34) to determine

v;

7. determine

@�

@z

from �; 
 and the de�nition (21)

@�

@z

=

1

r

Q+

@


@r

+

1

r

(r




� �r

�


 � 
);

8. evolve � to the next null hypersurface.

Note the central role played by the shear potential �. The Robinson-Trautman metrics

may be written in NQS coordinates, and have vanishing shear, g� = 0. The interpretation

of the RT metrics as having only purely outgoing gravitational radiation suggests again

that � (or more precisely, the ` � 2 components of �) represents the incoming radiation.

However, at best this is only a heuristic, since the analysis of the linearised Einstein

equations in the NQS gauge in [10] showed that the odd part of 
 � 2v

0

� (and not �) is

a gauge-invariant quantity in the linearised limit.
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7. Compatibility (evolution) equations

The Einstein components G

nn

, G

nm

by symmetry will provide equations along the ingo-

ing null geodesics, which translate into

@

@z

constraint equations. Although these should

be satis�ed by virtue of initial conditions and the conservation identity, numerically we

must expect some divergence from zero. Consequently these equations, analogous to the

constraint equations familiar from the Cauchy problem, will provide a measure of the

numerical accuracy of an evolution algorithm based on the above outline. Explicitly we

have

rD

z

(J=u) = r v

2

D

r

�

J

u v

�

+

J

2

2u

�

J v

u

+

2K

�

K

u

�r

Q

+
v ��v + r

2

uG

nn

rD

z

Q

+

= r vD

r

Q

+

+ 2 rD

r

gv +

2 rD

r

ugv

u

+Q

+

(J � i v curl� + i curl
)

+ 2

�

v� � 
 � u

�1

J gu� div� gv

�

� i (v g curl� � g curl
)

� vr

Q

+
� + 2r

gv

� +r

Q

+

 � 2r

2

uG

nm

Since G

`n

and G

mm

are invariant under the interchange ` $ n, they also yield com-

patibility equations:

rD

z

(uH) = rD

r

(uvH)� u+ u

2

H

2

v � uvH + uH div 


+

1

2

u jQ

�

j

2

�

1

2

u divQ

�

+ u r

2

G

`n

rD

z

(g�) = rD

r

(vg�) +

�

1

2

J � v � i v curl� + i curl


�

g�

+

1

2

HK u�

1

4

u(Q

�

)

2

+

1

2

ugQ

�

�

1

2

u r

2

G

mm

Roughly, H;J are the outward and inward expansion of the 2-spheres (�

NP

and �

NP

),

and g� and K are the outward and inward shears (�

NP

and

�

�

NP

). The general structure

of the Einstein equations may then be summarised very crudely (ignoring derivatives of

the derived potential v and of u):

1. G

``

yields D

`

H, the outward derivative of the outward expansion H;

2. G

`m

yields D

`

Q

�

, where Q

�

is essentially the connecting potential Q | so named

because of the identity

urD

n

(g�) + rD

`

K = gQ+ g� rD

r

v � g
 + i (g� curl 
 � g
 curl�) (36)

which relates the outgoing shear g� and the ingoing shear K (note also that Q =

ru g(m; [n; `]) measures the non-integrability of the distribution of 2-planes normal

to the quasi-spheres);
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3. G

`n

yields either D

`

(J), the outgoing derivative of the incoming expansion J , or

D

n

(uH), the ingoing derivative of the outgoing expansion H;

4. G

mm

yields either D

`

K, the outgoing derivative of the incoming shear, or D

n

g�,

the incoming derivative of the outgoing shear;

5. G

nn

yields D

n

J , the incoming derivative of the incoming expansion;

6. G

nm

yields D

n

Q

+

, the incoming derivative of the connecting potential Q.

This analysis may be performed instead directly using the usual NP spin coe�cient for-

mulae [5].

8. Aspects of the Numerical Methods

The �eldsH;J (spin-0), �; 
;Q;Q

+

; Q

�

(spin-1) and K (spin-2), are represented by either

their point values (on a rectangular grid in #;' coordinates, with respect to the usual

vector framing), or by their spectral coe�cients with respect to a spherical harmonic

decomposition in the angular directions. A �xed basis of real-valued spherical harmonic

functions leads to bases for all spin-weighted �elds, and in particular, �elds with spin 0

(functions), spin 1 (vectors) and spin 2 (traceless symmetric 2-tensors). The details of

these representations, and the routines used to transform between the di�erent representa-

tions, are described in a separate report by Andrew Norton [8]. The point representation

simpli�es the computation of products of �elds, while the spectral representation may be

used to compute terms involving angular derivatives (g;div; curl;�), and to spectrally

�lter numerical errors.

The elliptic system (33) is solved in the spectral representation using a conjugate

gradient method with preconditioner g

�1

, which leads in practice to rapid convergence,

provided �elds are considered in the spectral representation.

Various methods are being explored for the radial integration, including radial spectral

decomposition and Runge-Kutta integrators of various orders. The radial grid can be

adjusted to allow the integrator to reach to null in�nity, which it is hoped will permit an

accurate extraction of the asymptotic metric parameters.

Likewise, the best algorithm for evolving the seed �eld � is yet to be determined.

The simplicity of the equations (29,30,32), and the absence of any established techniques

for dealing with hyperbolic equations in transport form (but c.f. [7]), does permit more

extravagant possibilities: the example computation described below used a 4-th order

Runge-Kutta scheme for the time evolution as well as the radial integration.

9. Hawking and Bondi Mass

The Hawking mass of the (z; r) = const: 2-spheres is de�ned using the incoming and

outgoing expansions �

NP

; �

NP

, and in the NQS variables becomes

m

H

(z; r) =

1

2

r

�

1�

1

8�

I

S

2

HJ

�

(37)
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where the integral is over the unit 2-sphere and

I

S

2

HJ =

I

S

2

1

u

(2 � div �)(div
 + v(2� div�)):
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Figure 1: Evolution of the Hawking and Bondi

mass functions, for z = 0 : 7:5

The Bondi mass of the null hypersurface may be de�ned as the limit of the Hawking

mass at null in�nity

m

B

(z) = lim

r!1

m

H

(r; z):

Figure 1 shows the Hawking mass function at several times in a trial evolution run. I

must emphasise that this evolution code has not yet been subjected to rigorous validation

tests | these will form an important part of the development over the next year | but the

results at this stage are at least promising. The evolution used a radial grid of 256 points,

with variable r spacing to resolve the solution near Scri and the �nal 10 points spanning

the interval 17; 000 < r <1. The angular grid contained 16 � 32 points, corresponding

to a spherical harmonic resolution of L = 15, and the time step was dz = 0:05. The
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initial data was constructed using a test �eld � given by a random mixture of l = 2; 3; 4

spherical harmonics and supported in the region 10 < r < 100. The numerical calculation

was performed on a DEC Alpha at UNE, taking about 6 minutes/timestep and using

about 45Mb of memory. The graph was produced by the data visualisation package AVS.

The numerical code produces the functions H;J , from which the Hawking mass func-

tion is computed via (37). The graph shows the Hawking mass at z-intervals of 0:5, from

z = 0 to z = 7:5. Note that despite the delicate cancellations involved in (37) near in�nity,

there is a clearly de�ned asymptotic decay of m

H

to a constant limit, at all times. The

spike and dip features which are visible in the �nal �ve points (r > 50; 000), appear to

be caused by a combination of this delicate cancellation coming unstuck a little, and ac-

cumulated aliasing e�ects arising from the low ` � 15 S

2

spectral cuto�. The later times

correspond to the lower Hawking mass curves, so we have a numerical veri�cation of the

well-known decay in time of the Bondi mass. Although preliminary, this example does

suggest that the NQS technique will lead to a viable exterior integrator for the Einstein

equations.
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