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Abstract

A new numerical scheme for numerical relativity, based upon Riemann normal co-

ordinates, will be presented. The method will be applied to the construction of initial

data for a static Schwarzschild spacetime. It will be shown that the scheme yields second

order accurate estimates (in the lattice spacing) for the curvatures of a given metric.

However, when used to construct solutions of the constraint equations the method does

not appear to produce the correct solution. It is unclear at this stage what the cause of

this error is { an error of logic, a numerical error or quelle horreur a programming bug.

1. Introduction

The basic idea behind Riemann normal coordinates (see [1,2,3])) is to use the

geodesics through a given point to de�ne the coordinates for nearby points. Let the

target point be P and consider some nearby point point Q. If Q is close enough to P

then there exists a unique geodesic joining P to Q. Let a

�

be the components of the

unit tangent vector to this geodesic at P and let s be the geodesic arc length measured

from P to Q. Then the Riemann normal coordinates of Q are de�ned to be x

�

= sa

�

.

These coordinates are well de�ned provided the geodesics do not cross (we can always

choose the neighbourhood of P small enough for this to be true).

An equivalent de�nition of Riemann normal coordinates at a point P is that they

are a set of coordinates for which

�

�

��

= 0 at P

�

�

��;�

+ �

�

��;�

+ �

�

��;�

= 0 at P

As a consequence, one immediately obtains, by a Taylor series expansion around P ,

g

��

(x) = g

��

�

1

3

R

����

x

�

x

�

+O(�

3

)

where the coordinates of P have been chosen as x

�

= 0 and � is a typical length scale.

The point to note is that the metric is essentially constant (up to quadratic terms) in

a small neighbourhood of P . This mathematical contrivance embodies the equivalence

principle { that locally spacetime looks 
at. It seems like a good idea to build a numerical

scheme which at its heart embodies the equivalence principle. This is our main goal.
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The construction of a Riemann normal coordinate frame can be performed at any

point in the spacetime. However the expansion is valid only in a small neighbourhood of

each point. The size of that neighbourhood is limited by the constraint that each point

in that neighbourhood must be connected to the origin by a unique geodesic. Its not

hard to imagine a large collection of such neighbourhoods being set up so as to provide

a complete covering of the spacetime. One question that can now be asked is { How

can each neighbourhood (along with its metric) be represented?

The main idea to be presented in this paper is to record this information in a lattice.

The vertices of the lattice are just the set of origins of each Riemann normal coordinate

frame. The legs of the lattice are the geodesics that join neighbouring vertices. The

metric information is contained in the leg lengths and the angles between various legs.

One would of course have to be very careful in setting up the lattice so that all of the

necessary information (topology, metric and curvature) can be encoded in the lattice.

From the point of view of numerical relativity we would like to propose an inverse

construction. Suppose we are given the topology of the lattice (in the form of the

connectivity matrix for the vertices) and the leg lengths (and perhaps various angles).

Can we then extract the curvature from this information? If the answer is yes then

we could demand that these curvatures (and the metric) satis�es Einstein's equations.

This must then impose constraints on the original choice of leg lengths. Clearly this

amounts to solving Einstein's equations for the metric.

The Regge calculus [4] is another lattice approximation to general relativity. It

di�ers from our proposed new approach in that in the Regge calculus {

� The metric is not di�erentiable.

� The curvature must be viewed as a distribution. It can not be expressed as a

point function.

� The Regge �eld equations are not a simple transcription of Einstein's equations.

� Standard tools of analysis such as di�erentiation are not applicable to the Regge

calculus.

In contrast our proposed approach has the following features.

� The metric is smooth and (at least twice) di�erentiable.

� The curvature is a smooth point function.

� The �eld equations are exactly the Einstein �eld equations.

� All the usual tools of analysis are available.

To emphasize the distinction between a Regge lattice and our lattice we will call

our lattice a smooth lattice. Perhaps Riemann lattice might be a better name.

2. Schwarzschild initial data

As a test of smooth lattice relativity we should be able to successfully recover the

time symmetric 3-geometry for the Schwarzschild spacetime, namely

ds

2

= �(r)

4

�

dr

2

+ (rd�)

2

+ (r sin �d�)

2

�
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where �(r) = 1 +m=(2r) and r is the isotropic radial coordinate.

Our starting point is to propose a 3-metric in the form

ds

2

= �(z)

2

dz

2

+ �(z)

2

�

d�

2

+ sin

2

�d�

2

�

The coordinate z is a freely chosen radial coordinate. There is only one non-trivial

equation

0 =

(3)

R

which we must solve for � or �. To begin, write the metric in the 2+1 form

(g

��

) =

�

�

2

0

0 �

2

h

��

�

where h

��

is the metric of the unit 2-sphere. Then it is a straightforward calculation to

show that the above �eld equation is equivalent to

d

dl

�

1

�

d�

dl

�

=

R

4�

2

�

3

2

�

1

�

d�

dl

�

2

(1a)

where l =

R

�dz is the proper distance measured from the throat and R is the scalar

curvature of the unit 2-sphere.

The boundary conditions at the throat, where l = 0, are chosen to be

� = 1 and

d�

dl

= 0 (1b)

The �rst condition is equivalent to setting the ADM mass (in fact � = 2m). The second

condition is required for l = 0 to be a minimal surface.

Where does the smooth lattice enter into this calculation? We will use it to estimate

R. We will do this by constructing a lattice on a 2-sphere and solving the appropriate

lattice equations for R.

Since it is well known that R = 2 there seems little point in employing a smooth

lattice. Though this is a reasonable objection one can take the alternative view { if the

method does not work for this highly specialized case then it certainly will be of no use

in other situations.

2.1. Smooth lattice 2-sphere

To estimate R it will be necessary to choose a triangulation of the 2-sphere, compute

the geodesic leg lengths and �nally solve a set of equations (given below) for R.

The simplest approximation to a 2-sphere is a regular tetrahedron (see Fig(1a). Bet-

ter approximations can be generated by successively sub-diving each triangle according

to the pattern in Fig(1b).

The metric of the 2-sphere can be written as

ds

2

= d�

2

+ sin

2

�d�

2
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or as the induced metric on the surface 1 = x

2

+ y

2

+ z

2

in Euclidean 3-space with

the usual (x; y; z) coordinates. The (�; �) are related to the (x; y; z) by the usual polar

coordinate transformations. The (x; y; z) coordinates of the four vertices of the original

tetrahedron are easily calculated by appealing to the symmetry of the tetrahedron.

The coordinates of the vertices of the successive lattices are calculated in a two step

process. First each new vertex is introduced to the centre of each old leg. This vertex is

then displaced along the radial direction out to the unit sphere. In this way the (�; �)

coordinates of each vertex can be calculated.

The leg lengths for each leg are calculated by solving the geodesic equations as a two

point boundary value problem. At the same time we compute

R

ds along this geodesic

path. This gives us the leg lengths for each geodesic (segment).

2.2. Smooth lattice equations

Suppose each vertex has been assigned some integer label. We will use the notation

�

i

to denote the vertex with label i. Now consider the Riemann normal coordinate

frame centred on vertex �

o

. Suppose there are n triangles attached to this vertex and

that the vertices, starting with �

o

, are labelled, 0 to n.

We are free to choose our Riemann normal coordinates such that g

��

(x

o

) =

diag(1; 1); x

�

o

= 0 and x

2

1

= 0. This exhausts all coordinate freedoms, all the re-

maining x

�

i

and (one) curvature component(s) must be computed from the given leg

lengths.

The metric in this set of triangles is of the form

g

��

(x) = g

��

�

1

3

R

����

x

�

x

�

+O(�

3

)

It can be shown [2] (by expanding the geodesic equation as Taylor series) that the

geodesic joining �

i

to �

j

is described by

x

�

(�) = x

�

i

+ ��x

�

ij

�

�(1 � �)

3

R

�

���

�x

�

ij

�x

�

ij

x

�

i

+O(�

4

)

where � is an a�ne parameter with � = 0 at �

i

and � = 1 at �

j

. The geodesic leg

length can then be computed as L

ij

=

R

ds with the result

L

2

ij

=

�

g

��

�

1

3

R

����

x

�

ij

x

�

ij

�

�x

�

ij

�x

�

ij

+O(�

6

) (2)

where x

�

ij

= (x

�

i

+ x

�

j

)=2 and �x

�

ij

= x

�

j

� x

�

i

.

Note that

R

����

x

�

ij

x

�

ij

�x

�

ij

�x

�

ij

= R

����

x

�

i

x

�

i

x

�

j

x

�

j

and further note that, in 2-dimensions, there is only one independent curvature compo-

nent, which we can take to be R

1212

.

There are n triangles. Hence we have 2n leg lengths L

ij

. There are also n+1 vertices

for which there are 2(n + 1) coordinates x

�

i

to compute. However, we have already
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chosen 3 of the 2(n + 1) coordinates. Thus we have to compute 2n � 1 coordinates

and one curvature component from the 2n leg lengths L

ij

. Fortunately, we have as

many equations as unknowns. (in fact it is easy to see that this will always be true in

2-dimensions provided the surface is fully triangulated).

The 2n equations (2) were solved for the x

�

i

and R

1212

via a Newton-Raphson

method. Starting from 
at space, the iterations converged in about 3-4 iterations

(though more iterations were required for the very coarse approximation of the original

tetrahedron).

The estimates so obtained are listed in table (1). Since not every vertex in each ap-

proximation is equivalent to every other vertex (they have di�ering local triangulations)

the method returns di�erent estimates for R for each vertex. Hence in the table we have

listed the best and worst estimates for R. One can observe that the method converges

by a factor of four with each successive sub-division. As the leg lengths are halved with

each sub-division this implies the error in R varies as O(L

2

) where L is a typical length

scale for leg lengths. In short, the smooth lattice yields 2nd-order accurate estimates

for the curvature.

Table 1. Estimates of jR� 2j for a unit 2-sphere

Sub-division Worst estimate Best estimate Average estimate

1 1.19 1.19 1.19

2 2.99e-1 4.91e-2 1.71e-1

3 6.40e-2 1.91e-3 2.55e-2

4 1.54e-2 5.67e-5 2.97e-3

5 3.81e-3 5.18e-6 2.47e-4

2.3. Results

Using the worst values for R, from the previous section, the initial value problem

(1) was solved using a 4-th order Runge Kutta method starting from the throat and

integrating outwards.

The result of the integration is that we have the 3-metric in the form

d~s

2

= dl

2

+ �

2

(l)d


2

where d


2

is the metric of the unit 2-sphere. We would like to compare this with the

known metric

ds

2

= �

4

(r)

�

dr

2

+ r

2

d


2

�

where �(r) = 1 + (m=2r). One way to do this is to align the coordinates r and l by

integrating, in parallel with the main equation (1),

dr

dl

=

1

(1 +

m

2r

)

2
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starting from r = m=2 at l = 0. The function r(l)(�(r(l)))

2

can then be compared

directly with �(l). The results are shown in Fig(3) and they show a very good agreement.

Two sets of graphs have been presented, one for the set of worst estimates of R and the

other for a sequence of R values. This later set of graphs clearly shows that the error ��

in �, at �xed r appears to vary as O(�R). Thus the global discretization error appears

to be �� = O(L

2

).

3. Discussion

The �rst point that must be made is that the above test is a very benign test of the

smooth lattice method. The sole contribution of the smooth lattice was to aid in the

computation of the scalar 2-curvature, which was already known to be 2. One could

probably concoct any number of schemes which spit out the magic number 2.

A far better test would be to employ a smooth lattice for the full 3-metric (rather

than just the metric of the 2-sphere). Such an investigation has been under way for

some time with mixed results. The idea is to sub-divide the 3-space into a large set of

cube-like cells with the cells arranged to lie between successive 2-spheres. The edges of

the cell that joins a pair of successive 2-spheres are chosen to be segments of the radial

geodesics. The symmetry of the space suggests that one tube of cells, extending from

the the throat to some large outer region, is su�cient to de�ne the full 3-metric. The

results so far show that the curvatures, for a given metric, can be estimated to an order

O(L

2

) where L is the typical cell size. In this case the only non-trivial equation, 0 = R,

is also satis�ed to order O(L

2

). However, what we really want to do is the reverse,

to use the �eld equation 0 = R to construct the 3-metric. We have attempted to do

this by starting with the throat and successively adding cubes to the tube. The size of

each new cube is constrained by 0 = R and the gauge choice that its radial edges are a

smooth extension of the radial geodesic. The results are very disappointing { the metric

so constructed has an order O(1) error relative to the correct Schwarzschild metric. At

this stage in the investigation it is hard to pinpoint the reason for this error, it could be

a bug in the program, it could be a error in the smooth lattice methodology. I would

prefer, despite the embarrassment, that the error was a bug in my code! Needless to

say much detective work is needed.

The honest assessment of the utility of Riemann normal coordinates, in the form

suggested here, for numerical relativity is not that the jury is out but that the jury has

yet to hear any substantive evidence. I hope to provide some of that evidence in the

near future.

4. Riemann Normal Coordinates { A Summary

For convenience, here are some useful formula for geodesics, angles and so in Rie-

mann normal coordinates. Some of these formulas have already been stated in the body

of the paper but they are repeated here just for completeness. It will be assumed for

the remainder that x

�

= 0 at the origin of the Riemann normal coordinates.
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4.1. Riemann normal coordinates

�

�

��

= 0 at P

�

�

��;�

+ �

�

��;�

+ �

�

��;�

= 0 at P

4.2. Metric

g

��

(x) = g

��

�

1

3

R

����

x

�

x

�

+O(�

3

)

At P ,

�

�
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1

3

(R

�

���

+R

�
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)

g
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1

3

(R
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)

R
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= g

��;��
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4.3. Geodesic distance

Let two points have coordinates x

�

i

and x

�

j

. The geodesic distance between these

points is given by

L

2

ij

= (g

��

�

1

3

R

����

x

�

ij

x

�

ij

)�x

�

ij

�x

�

ij

+O(�

4

)

= g

��

�x

�

ij

�x

�

ij

�

1

3

R

����

x

�

i

x

�

i

x
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where x

�

ij

= (x

�

i

+ x

�

j

)=2 and �x

�

ij

= x

�

j

� x

�

i

.

4.4. Geodesics

The geodesic starting from �

i

and passing through to �

j

is described by

x

�

(�) = x

�

i

+ ��x

�

ij

�

�(1 � �)

3

R

�

���
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�
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�
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x

�
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+O(�

4

)

where � is an a�ne parameter with � = 0 at �

i

and � = 1 at �

j

.

At � = 0

ds

d�

= L

ij

dx

�

ds

=

1

L

ij

�

�x

�

ij

�

1

3

R
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�
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�
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x

�
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�
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4
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The geodesic passing through �

i

and with unit tangent vector m

�

at �

i

is described

by

x

�

(s) = x

�

i

+ sm

�

+

s

2

3

R

�

���

m

�

m

�

x

�

i

+O(�

4

)

where s is the geodesic arc length.
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4.5. Cosine law

Given a triangle with vertices �

i

; �

j

and �

k

the angle at vertex �

k

can be found

from

2L

ik

L

jk

cos �

k

= L

2

ik

+ L

2

jk

�L

2

ij

�

1

3

R

����

�x

�

ik

�x

�

ik

�x

�

jk

�x

�

jk

+O(�

5

)
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