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Abstract

At present we have only the very successful but phenomenological Einstein geo-

metrical modelling of the spacetime phenomenon. This geometrical model provides

a `container' for other theories, in particular the quantum �eld theories. Here we

report progress in developing a Heraclitean Quantum System. This is a particular

pregeometric theory for space and time in which no classical or geometric structures

are assumed, but rather the emergence of such phenomena are sought.

Ta panta rei - all is 
ux Heraclitus of Ephesus, sixth century BC

1. Introduction

At present we have no theory of the phenomena of time and space. Rather we have a

very successful phenomenology given to us by Einstein. We regard Einstein's model as a

phenomenology for the simple reason that in setting up this model one makes very explicit

assumptions about time and space. For example one of the key Einstein assumptions was

to assume, in addition to the very phenomenon of time, that time is local, which contrasted

sharply with Newton's assumption of a global time. We take the de�ning indicator of a

theory to be the property that it predicts phenomena, but does not have those phenomena

explicitly or even covertly built into its axioms. Well known examples of successful theories

include the atomic theory: it predicted the existence and properties of atoms, molecules,

etc, but contained only electrons and nuclei in the axioms. A second example is that of

nuclear physics: Quantum Chromodynamics (QCD) begins with quarks and gluons and

predicts the phenomena of hadrons, nuclei etc. In this example there was a long period

of phenomenological modelling in which hadrons were described by e�ective actions, or

equivalently Hamiltonians, involving hadronic �elds. The structure of these e�ective

actions was obtained by appealing to various symmetries that appeared to be manifested

in the hadronic data. These examples illustrate the idea of emergent phenomena.

A feature of the Einstein model is that it is a geometrical model, and is a generalisation

of the geometrical modelling by Galileo and Newton. These models build upon the di�er-

ent Ancient Greek models of Pythagoras, Parmenides and Democritus. This modelling is

so e�ective and persuasive that there is a tendency to confuse the phenomena of time and

space with the geometrical modelling. For example the modelling of time, whether local

217



218 R.T. CAHILL & C.M. KLINGER

or global, by the real number line is often implicitly assumed to be an actual property of

the phenomenon of time.

The present standard model of physics, while successful, has a very strange three

stage structure. First one constructs a classical geometrical spacetime structure. Second,

various classical �elds are attached to this geometrical structure, and �nally, in the third

stage one quantises the matter �elds. The whole process resembles vase painting. As an

afterthought, one might even attempt to derive the classical behaviour of large quantum

systems by means of some classicalisation argument. What one sees in this structuring

is an incomplete separation of the historical development of the subject from a proper

theoretical structure. In a mature theory one would expect to see the classical features

as emergent properties of some abstract quantum system which itself does not contain

classical structures. We call such systems Heraclitean Quantum Systems (HQS) after

Heraclitus of Ephesus (540-480 BC) who appears to have anticipated such systems by

some 2500 years. He argued that common sense is mistaken in thinking that the world

consists of stable things; rather the world is in a state of 
ux. The appearance of `things'

depends upon this 
ux for their continuity and identity. He postulated `cosmic �re' as

the basic `stu�'. What needs to be explained, Heraclitus argued, is not change, but the

appearance of stability. We suggest that the success of the standard model in its present

three stage form is a clear indication of some extremely robust mean-�eld type phenomena

arising within a HQS.

In recent years much e�ort has been put into attempts to quantise gravity. To us

this seems a suspect procedure for discovering deeper theories. Quantisation is not a

fundamental physical process, rather it is a guessing procedure that has been invoked

somewhat fruitfully in the last 70 years. To give a recent counter example we note that

the quark-gluon quantum system was not obtained by quantising the classical hadronic

phenomenological �eld theory of the 1960s. Rather the next level down from hadrons was

obtained by some inspired guessing. The problems that then arose were the demonstration

that hadronic laws, in the form of an e�ective action description, could be extracted from

the quark-gluon system, and also the experimental study of hadronic systems to reveal

signatures of the quark-gluon subsystem.

Of considerable current interest is the process of classicalisation. In this one attempts

to deduce a special emergent behaviour of large quantum systems. In such systems clas-

sical behaviour is a weird and poorly understood phenomenon. The obvious fact that we

modelled classical behaviour �rst does not deny the fact that it is a secondary e�ect. Basic

quantum mechanics is still bedeviled by the metaphysical �x-ups that were invoked in the

early days of quantum theory when studying the transition from a simple to a complex

large scale quantum system that occurs during the measurement process. Fortunately

classicality is now seen as a physical process requiring detailed dynamical analysis.

The need to discover a non-geometric theory to explain the time and space phenomena

has been strongly argued by Wheeler [1], under the name of pregeometry. Gibbs [2] has

recently compiled a literature survey of such attempts. They include: cellular automata,

lattice �eld theories, quantum metric spaces, causal nets, poset models, simplicial quan-
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tum gravity, fractals, topological quantum �eld theory, �eld theory on a complex cell, spin

networks, twistor theory, signal spaces, non-commutative geometry and event-symmetric

space-time. Isham [3] has recently discussed the possibility that spacetime is indeed a

phenomenological construct, and not fundamental.

Here we give a brief outline of some of the insights that have been obtained for a

particular Heraclitean Quantum System, which is a pregeometric type model with no

classical structures assumed in its axioms. In many pregeometric models residual classical

and phenomenological structures are retained. Our HQS is an abstract Grassmannian

algebraic system, which is based upon some of the insights gained from the derivation

[4] of the emergent hadronic phenomena for the quark-gluon system. The nature of

this analysis is brie
y discussed in section 2, and highlights the idea of action sequencing

induced by dynamically determined changes of functional integration variables. In section

3 a particular HQS is presented together with some insight into how spacetimemight arise.

2. Action Sequencing

QCD provides us with a �ne example of the emergence of complex e�ective theories.

Some parts exhibit an induced geometrical form, while overall we see the idea of action

sequencing that is an integral part of the derivation of emergent phenomena, and also

the importance of condensate e�ects. These results have been achieved using the Func-

tional Integral Calculus (FIC) [4] which most powerfully takes advantage of the functional

integral formulation of quantum �eld theories.

QCD essentially involves the functional integral in (1) for the vacuum persistence

amplitude in the presence of sources J (which are not shown on the RHS). At low energies

or long wavelengths we only observe hadronic degrees of freedom, and not the quark and

gluon �elds. In this respect we expect QCD to be archetypal: in HQS we do not expect to

observe the fundamental de�ning algebraic elements. Their usefulness will rest solely upon

their role in successfully predicting a large amount of higher level observable phenomena.

The derivation of the low energy form of QCD, namely the hadronic form, is outlined in

(1)-(4). As expected this derivation is not exact. A useful step is that of approximating

QCD by the Global Colour Model (GCM) [4].

< 0 j 0 >

J

=

Z

DqDqDA exp(�S

QCD

[A; q; q]) (1)

�

Z

DqDqDA exp(�S

GCM

[A; q; q]) (Global Colour Model) (2)

=

Z

DBDDDD

?

exp(�S

bl

[B;D;D

?

]) (bilocal �elds) (3)

=

Z

D� : : :DNDN : : : exp(�S

had

[�; : : : ;N;N; : : :]) (local �elds) (4)

The derived hadronic action that �nally emerges from this action sequencing, to low

order in �elds and derivatives, has the form
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(5)

This shows that the emergent hadronic phenomena are very rich and complex; that is

why the nucleus is so much more complicated than atoms.

We see in the above the powerful notion of action sequencing

S

QCD

[A; q; q]! S

GCM

[A; q; q]! S

bl

[B;D;D

?

]! S

had

[�; : : : ;N;N; : : :] (6)

Each change of functional integration �eld variables, and these are mandated by the

dynamics, generates a new e�ective action for those �eld variables. It is only the �nal

hadronic variables and their induced e�ective action that allows us to relate QCD to the

experimental data. Even the hadronic form in (4) requires further evaluation to produce

the physical hadrons, since (4) involves the so-called core or constituent states. The �nal

hadronic functional integration dresses each of these core states with a cloud of other

hadrons, mainly low mass mesons.

A key intermediate step is the determination of the minimum of the action in (3)

�S

bl

[B;D;D

?

]

�B

= 0; : : : (7)

which has a solution with B 6= 0 and gives the qq condensate e�ect. This simply means

that the induced e�ective action has a non-trivial minimum away from the perturbative

B = 0 point. Similar e�ects occur in superconductivity. This condensate e�ect is one

of the most important dynamical e�ects in QCD and goes a long way in explaining the

nature of hadrons. In particular it generates a running mass for the constituent quarks,

and leads to the constituent quark mass of some 300 MeV. A recent account is given in [5].

The structure of the condensate and the consequent structure of the hadrons is determined

by the gluon correlations. At the end of the calculation of the derivative expansion we,

in e�ect, suppress any explicit mention of the internal structure of the hadrons, resulting

in local couplings of local �elds - the emergent hadronic phenomenon.
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Hadrons may be viewed as deviations in the structure of the condensate. The lowest

mass hadrons correspond to those deviations in the 
attest directions of the e�ective

action for the bilocal �elds, in (3). These correspond to the pions. If the quark current

masses are zero then these are directions in which the action is strictly 
at, and the

resulting massless mesons are known as Nambu - Goldstone (NG) bosons. These massless

modes are represented in (5) by the matrix U(x) = exp(i

p

2�

a

(x)F

a

) where the fF

a

g are

the generators of the SU(N

f

) 
avour symmetry group. The NG boson �elds �(x) form

homogeneous Riemann coordinates for this vacuum manifold, which has the form of a

coset space. The internal structure of the pions is intimately related to the structure of

the condensate. Thus the long range part of the nuclear force is determined by the near

degeneracy of the condensate equations (7). See [6] for a recent analysis of the pion sector

of the GCM. We end this section by giving an insight into the nature of the condensate

deviations. If B

0

(x; y) is a particular solution of (7), possibly having degenerate solutions,

then the idea of a condensate deviation is given by

B(x; y) = B

0

(x; y) +

X

a

�

a

(

x+ y

2

)�

a

(x� y) (8)

in which we expand the x � y dependence of B(x; y) into a complete set �

a

(w), with

the �

a

(z) as expansion coe�cients. We may change the variables of integration from the

B(x; y) to the �

a

. In the GCM the �

a

(z) are chosen in order to diagonalise the 2nd order

terms arising when the bilocal e�ective in (3) is expanded about B

0

(x; y). This essentially

leads to the �

a

(w) being solutions of Bethe-Salpeter equations, and describing the internal

structure of qq core states. The �elds �

a

(z) describe the `centre-of-mass' motion of these

mesonic bound states. Fields of this type occur in (4). This expansion procedure leads

to a bosonisation of QCD. A detailed formal derivation and generalization to introduce

diquarks and baryons is given in [4], leading to the hadronisation of QCD. Recent results

and discussion are given in [5].

3. Heraclitean Quantum Systems

A HQS has no classical structures or concepts built into the axioms. Consider a QCD

type model stripped of all classical details (spacetime, gluon �elds,: : : ) except analogues of

the quark `�elds' and the Pauli Principle as implemented through a Grassmann algebraic

system. Can we use bosonisation techniques to recover any classical features that such a

system might possess? Our Grassmann algebra is a set of 2N elements, with N !1.

fM

i

; i = 1; 2; : : : ; 2Ng = fm

i

;m

i

; i = 1; 2; : : : ; Ng (9)

and, by de�nition, mutually anticommuting

M

i

M

j

= �M

j

M

i

so that M

i

M

i

= 0 (10)

The distinction betweenm

i

andm

i

only arises when some form for the `action' S

HQS

[m;m]

is speci�ed. We name m;m monads after Leibniz [7]. Then a `correlation' is de�ned by

G

i;:::

j:::

= G[m

i

m

j

: : : e

�S

HQS

[m;m]

] (11)
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which involves Grassmann `integration'. G[: : :] is a purely algebraic process [8]. A more

general `correlation' is

G[F ] = G[F [m;m]e

�S

HQS

[m;m]

] (12)

where F is some function of all the elements. To de�ne the integration process expand

the `integrand' as a polynomial

F [m;m]e

�S

HQS

[m;m]

= 1 +

X

c

i

m

i

+ : : :+ c

L

m

1

m

2

: : :m

N

m

1

m

2

: : :m

N

(13)

The sum of the terms of highest order has been written in some standard order. Then by

de�nition,

G[F [m;m]e

�S

HQS

[m;m]

] = c

L

(14)

A particular Grassmann integration that can be explicitly performed is [8]

G[e

�

P

M

i

A

ij

M

j

] = Pf(2A) (15)

whereA is an antisymmetricmatrix, and where Pf(A) is the square root of the determinant

of an antisymmetric matrix A, in the sense that Pf(A)

2

= detA.

Extending the Grassmann algebra to include `sources' l

i

; l

i

, a generating functional is

introduced

Z[l; l] = G[e

�S

HQS

[m;m]�lm�ml

] (16)

Let us consider the particular HQS de�ned by the quartic action

S

HQS

[m;m] = �

1

2

m:mm:m =

X

i>j

m

i

m

j

m

j

m

i

(17)

No notion of locality is permissible, so all elements are in `interaction'. The apparent

dominance of local interactions must be emergent. The action has a large invariance

group: m! Um;m! mU

�1

.

Consider a bosonisation along the line of the GCM bosonisation in QCD. We can put

Z in the form

Z[l; l] = G[

Z

DBe

�S

Bmm

[B;m;m]�lm�ml

] (18)

where

S

Bmm

[B;m;m] =

1

2

X

i;j

B

ij

B

ij

�

X

i;j

B

ij

(m

i

m

j

�m

j

m

i

) (19)

with B

ij

= �B

ji

and real. This is easily checked on doing the B-gaussian integration.

We may now explicitly perform the G process giving

Z[l; l] =

Z

DBe

�

P

i>j

B

2

ij

+TrLn(B)+lB

�1

l

(20)
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The Grassmann algebraic aspects are now contained in TrLn and the l; l algebra. The

algebraic G process has now been given a representation involving the sum over all possible

B con�gurations. This sum is the `Fire of Heraclitus': : : `the 
ux'. The induced action is

S

C

[B] =

X

i>j

B

2

ij

�TrLn(B) (21)

Here `B' is the analogue of bilocal �elds in QCD. Consider the minimum of the induced

action, which de�nes the most signi�cant part of the B integrations.

�S

C

[B]=�B = 0 (22)

gives B = �B

�1

- the `condensate' equation, with solutions B, analogous to the gap equa-

tion in superconductivity, and to the condensate equation in QCD. The general solution

is B = RB

0

R

�1

where R is an arbitrary orthogonal matrix and B

0

is the block diagonal

matrix

B

0

=

0

B

B

B

B

B

B

@

0 +1 0 0 : : :

�1 0 0 0 : : :

0 0 +1 0 : : :

0 �1 0 0 : : :

1

C

C

C

C

C

C

A

(23)

Hence the condensate is highly degenerate. The R transformation `switches' monad pair-

ings. The degeneracy of the condensate dominates the B-
uctuations. We now search for

signs of an emergent spacetime phenomenon, quantum �elds, etc.

Consider the `nihilo ! nihilo amplitude'

< N j N >= Z[0] =

Z

DBe

�S

C

[B]

(24)

Consider the deviation from B

0

B

ij

= B

0ij

+

X

a

�

a

�

a

ij

(25)

Our �rst choice for the �

a

ij

is the following: Set `a' to be a serial index a � (IJ), and with

�

a

ij

= ��

a

ji

= +1 if I = i and J = j, otherwise �

a

ij

= 0. The �

a

ij

form a complete set for

the expansion, with expansion coe�cients �

a

. Then, changing variables of integration,

< N j N >=

Z

D�e

�S

C

[B

0

+�:�]

(26)

This choice is essentially equivalent to the de�ning B

ij

integrations. As usual with de-

generate condensates we make the superselection assumption that we can work in the

neighbourhood of one condensate point, say B

0

, and expand S

C

in powers of �

a

S

C

[B

0

+ �:�] = S

C

[0] +

X

ab

�

a

�

b

K

ab

+

X

abc

�

a

�

b

�

c

K

abc

+ : : : (27)
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where there is no linear term because of the condensate equation (22). We can choose

new variables of integration by diagonalising the quadratic term in (27), giving

< N j N >=

Z

D�e

�S

C

[0]�

P

a

�

a

�

a

�

a

�

P

abc

�

a

�

b

�

c

K

0

abc

+:::

(28)

This change of variables is equivalent to a new choice for the �

a

ij

. Approximately one

half of the eigenvalues �

a

have value zero: these correspond to the `massless' NG modes,

i.e. deviations in the tangent plane to the condensate manifold. The remaining �

a

are

all non-zero and equal: these `massive' modes correspond to deviations perpendicular to

the condensate manifold. In QCD the analogue of the �

a

modes are qq meson core-state

modes, and the diagonalisation procedure is there the Bethe-Salpeter equation. Because

of the peculiarities of QCD the hadrons contain either two quarks (mesons) or three quarks

(baryons) together with secondary dressings of these core states. However in this HQS we

are interested in multi-monad modes, within which we hope to �nd evidence of classical

structures. For this purpose the above two possible choices of integration variables are

not helpful. We now consider yet a third choice of integration variables. In (25) consider

a new set of �

a

: �

a

ij

= +1 with probability

p

2

or �1 with probability

p

2

, and = 0 otherwise,

i.e. with probability q = 1 � p. In some sense each such �

a

corresponds to some random

multi-monad excitation of the condensate. We need this set to be complete. With the

extreme choice p = 0 only one trivial �

a

is formed. Similarly, if p = 1 we form only �'s

with all o�-diagonal entries being +1 or �1. However if p � 1 then the �

a

have sparse

non-zero entries, and approximate a complete set. Hence changing to these variables in

(26), and using G = fG

a

g as the new variables of integration,

< N j N >=

Z

DGe

�S

C

[B

0

+G:�]

(29)

This new set of multi-monad �

a

has a very interesting interpretation. To each such �

a

ij

matrix we can associate a random graph: consider the indices i or j as labelling the `points'

or `nodes' of a graph, in which two points i and j are linked if j�

a

ij

j = 1. Such a graph

is in general composed of disconnected pieces. Although we have no a priori background

geometry we can nevertheless de�ne one measure of distance between points within a

connected piece by counting the minimum number of links connecting the points. Nagels

[9] has considered the probability distribution of such distances in connected random

graphs. Let D

k

= 1; 2; 3; : : : be the number of points a distance k = 0; 1; 2; 3; : : : from a

particular arbitrary point, called the origin. So D

0

= 1 (by de�nition), D

1

is the number

of adjacent points, etc. For p� 1 the shape of a connected random graph, as de�ned by

the (relative) probability distribution of distances, is given by

P [D

k

] =

L

Y

i=1

(D

i�1

)

D

i

D

i

!

(30)

where L is the maximum distance of any point from the origin. Further

L

X

k=0

D

k

= N

c

(31)
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where N

c

is the number of points in the connected random graph. The most probable

distribution, i.e. the most probable connected graph, from maximizing P [D

k

] subject to

the constraint (31) [9] is

D

k

�

L

2

ln L

2�

2

"

sin

2

 

�k

L

!

�

1

3

�

�

L

�

sin

 

2�k

L

!

:ln sin

 

�k

L

!#

(32)

The remarkable property of the most probable distribution in (32) is that the resulting

emergent structure closely resembles a three-dimensional closed space of positive curva-

ture, for we obtain from (31) that

N

c

�

 

lnL

4�

2

!

L

3

(33)

We also see the leading sin

2

term in (32) characteristic of the hypersphere S

3

.

The partitioning of the random graphs into connected pieces is matched by a corre-

sponding partitioning of each �

a

, so that for the integration variables G

a

each subscript

labels, in the most probable case, some three-dimensional kind of closed space, with in-

ternal structure speci�ed by a �

a

. After expanding the exponent in (29) in powers of G

a

and computing the trace summations, we are left with an induced e�ective action for the

G

a

< N j N >=

Z

DGe

�S[G]

(34)

corresponding to a quantum `�eld' theory of interacting 3-spaces. This clearly has similar-

ities with some programs that are currently being pursued in quantising general relativity.

However it is not clear that our 3-spaces are necessarily to be directly identi�ed with the

spatial section of a `universe', for one might expect to see some further condensation

processes for these `core' states leading to a fractal or foamy spatial structure.

However the outstanding problem is to show that the HQS can induce a time phe-

nomenon: can we demonstrate a natural classical sequencing - the basic phenomenon of

time? To this end we introduce a complete set of functions ff

�

(G)g for which

�(G

2

�G

1

) =

X

�

f

�

�

(G

2

)f

�

(G

1

) (35)

where now the superscript on G

i

labels di�erent copies of fG

a

g. Then

< N j N >=

Z

DG

2

Z
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1

e

�

1

2

S[G

2

]

�(G

1

�G

2

)e

�

1

2

S[G

1

]

(36)

=

X

�

Z

DG

2

1:e

�S

(2)

[G

2

]

f

�

�

(G

2

)

Z

DG

1

f

�

(G

1

)e

�S

(2)

[G

2

]

:1 (37)

where we de�ne, in general, S

(n)

[G] =

1

n

S[G]. Think of

C

(2)

�

=

Z

DG

1

f

�

(G

1

)e

�S

(2)

[G

1

]

:1 (38)
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as a transition amplitude, where the `1' represents the beginning of the `universe', i.e.

with all G equally likely. Continue inserting complete sets

C

(2)

�

=

X

�

Z

DG

1

f

�

(G

1

)e

�S

(4)

[G

1

]

f

�

�

(G

1

)

Z

DG

2

f

�

(G

2

)e

�S

(4)

[G

2

]

:1 (39)

C

(2)

�

=

X

�

A

(4)

��

C

(4)

�

(40)

A

(n)

��

=

Z

DGf

�

(G)e

�S

(n)

[G]

f

�

�

(G) (41)

More insertions give

C

(2)

�

=

X

�
:::

A

(n)

��

A

(n)

�


: : :C

(n)

:

(42)

which has the form of a multiple sequencing. But the time phenomenon is about restricted

or classical sequencing, with some residual quantum phenomena. A possible unique se-

quencing or history is a partition of < N j N > such that di�erent histories, by de�nition,

have negligible interference. They are decoherent. They are classical. Hence we must look

for a particular choice of complete set in which some of the members generate decoherent

and robust histories

There is a limit to the usefulness of these complete set insertions. For the action

S

(n)

becomes 
atter, so that 
uctuations or deviations from the condensate become more

extreme, suggesting that any time-like sequencing description has limited relevance at

very short time intervals, so resolving the objections of Parmenides and Zeno to in�nite

`information processing'. So the modelling of time by the real number line will be limited

by the nature of the 
uctuation dominance that sets in at too �ne a resolution. Thus the

very concept of spacetime simply dissolves away into a 
ux of non-geometric 
uctuations.

At intermediate scales the HQS would appear to produce a spacetime modelling resem-

bling a foam or fractal structure. HQS is necessarily a quantum cosmology. But quantum

cosmology is not just about the beginning of the universe; it is about the ongoing evolu-

tion of the universe. It is a part of the classicalisation process that classical (continuum)

di�erential equations can be used to evolve 3-spaces etc, but that phenomenology is con-

tingent upon the underlying Heraclitean Quantum System, as Heraclitus suggested: the

appearance of `things' depends upon this 
ux for their continuity and identity.

We have not discussed quantum `matter'; matter will be excitations embedded in the

spatial structures. Space is not passive, it is not a container.
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