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Abstract

In a class of algebraically special spacetimes, we show that a solution of a complex

scalar wave equation leads to a solution of the massless Dirac equation. The converse

is also true. This technique allows us to construct a symmetry operator for the

massless Dirac equation using a conformal Killing-Yano tensor.

Introduction.

The Hertz potential scheme has proven useful for solving Maxwell's equations in 
at space,

and has also been extended to curved spacetimes [6]. In certain algebraically special

spacetimes, a further reduction is possible, since the components of a Hertz potential can

be expressed in terms of a complex function satisfying a scalar wave equation. Such a

function is known as a Debye potential. In conformally 
at spacetimes, the method of

Debye potentials can be applied to massless �elds of any spin by means of the spin raising

operator associated with a twistor. Conversely, a massless spinor �eld yields a function

satisfying the Debye wave equation after su�cient applications of spin lowering with a

twistor. In general, spin raising and lowering may be used to generate a massless �eld of

any desired spin from another [9].

The purpose of this paper is to show how this technique can be extended to a broader

class of spacetimes by raising and lowering with spinors corresponding to null shear-

free vector �elds. These shear-free spinors satisfy an equation which may be considered a

generalisation of the twistor equation. In this paper we only consider massless Dirac �elds.

Applications to �elds of higher spin will be given in [1]. The class of spacetimes in which

the method has been extended is the generalised Goldberg-Sachs class [10]. This consists

of all algebraically special spacetimes in which each repeated principal null direction is

aligned with a null shear-free vector �eld, and vice-versa. In a spacetime of this type,

we show that a massless Dirac �eld may be lowered with a shear-free spinor to give a

Debye potential, which may then be raised with another shear-free spinor to produce

a new massless Dirac �eld. Thus we have an operator on spinor �elds which generates

new solutions of the massless Dirac equation from old ones - a symmetry operator. The

�
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operator is of �rst order, and it can be shown to be an R-commuting operator, that is,

one whose commutator with the Dirac operator is another operator composed with the

Dirac operator. Kamran and McLenaghan have shown that the most general operator of

this type is a linear combination of three R-commuting operators which are constructed,

respectively, from a conformal Killing vector, the Hodge dual of a conformal Killing vector,

and a conformal Killing-Yano tensor of degree 2. The operator we discuss in this paper

is essentially the component of the operator presented in [8] depending on a conformal

Killing-Yano tensor. The spinorial image of a conformal Killing-Yano tensor is a 2-index

Killing spinor. Symmetry operators utilising a Killing spinor have been studied in [7]. A

conformal Killing-Yano tensor whose divergence vanishes is called a Killing-Yano tensor.

If that is the case then we have an operator which commutes with the Dirac operator,

and so is a symmetry operator for the massive Dirac equation. This has been referred to

as a generalised angular momentum operator for the Dirac equation [5].

In Section 1. we brie
y review the theory of Hertz potentials in curved spaces using

the language of exterior forms, as set out in [6]. In Section 2. we summarise the Petrov

classi�cation of the conformal tensor following Thorpe [11]. In particular, we characterise

algebraically special spacetimes in a form which will be useful to us. Section 3. introduces

spinors as elements of a vector space carrying a representation of a Cli�ord algebra. The

connection between this approach and alternatives such as the Infeld-van der Waerden

formalism or the 
-matrix representation may be found in [3]. In Section 4. we discuss the

connection between null shear-free vector �elds, spinors, and repeated principal directions.

Section 5. shows how to construct a solution of the massless Dirac equation out of a

function satisfying a modi�ed wave equation, and vice-versa. Section 6. shows how this

leads to a symmetry operator for the massless Dirac equation, and gives an expression

for the operator in terms of a conformal Killing-Yano tensor constructed from a pair of

shear-free spinors.

1. Hertz and Debye potentials for a vacuum Maxwell �eld.

On a spacetime (M; g), a Hertz potential H is a 2-form chosen so that

4H = dP + d

�

�Q (1)

where d is the exterior derivative on forms, � is the Hodge dual, d

�

� �d� is the co-

derivative and P and Q are arbitrary 1-forms. The Laplace-Beltrami operator 4 �

�(dd

�

+ d

�

d) is a generalisation of the Laplacian to di�erential forms. Then for the

2-form F given by

F = dd

�

H+ dP (2)

we also have

F = �d

�

dH� d

�

�Q (3)

by (1), thus the vacuum Maxwell equations dF = 0 and d

�

F = 0 are satis�ed. Further-

more, if the spacetime is in the generalised Goldberg-Sachs class, then the components of
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H may be expressed entirely in terms of a complex function satisfying a wave equation

- a Debye potential. For suitable choices of P and Q, F can be written using the Debye

potential and a conformal Killing-Yano tensor (see [2]). We will show in Section 5. that

the massless Dirac equation can also be solved using a Debye potential in spacetimes

admitting such a tensor.

2. Petrov classi�cation.

The conformal tensor of a spacetime may be regarded as a self-adjoint operator on the

space of complex self-dual 2-forms. The Petrov classi�cation scheme characterises the

Jordan canonical form of the conformal tensor C when acting on 2-forms in this way.

Given a basis fX

a

g for vector �elds with dual basis fe

a

g, the conformal tensor may be

written using a set of conformal 2-forms C

a

b

as

C = 2C

a

b


 e

b


X

a

: (4)

Putting C

ab

= g

ac

C

c

b

, the conformal 2-forms are de�ned by

C

ab

= R

ab

�

1

2

(P

a

^ e

b

� P

b

^ e

a

) +

1

6

Re

a

^ e

b

(5)

where R

ab

are the curvature 2-forms derived from the curvature tensor R by

R

a

b

(X;Y ) =

1

2

R(X;Y;X

b

; e

a

) 8 X;Y 2 �TM: (6)

(The symbol �TM denotes the space of sections of the tangent bundle of M, that is,

vector �elds on M). The Ricci 1-forms P

a

are given by

P

a

= Ric(X

b

;X

a

)e

b

(7)

and R = Ric(X

a

;X

a

) is the curvature scalar.

Using the conformal 2-forms, the action of C on a 2-form � is

C � � =

1

2

X

b

X

a

�C

ab

(8)

where denotes the interior derivative on forms. The space of complex self-dual 2-forms

has (complex) dimension 3. An algebraically general spacetime has three independent

eigenvectors with distinct eigenvalues, all other cases being algebraically special.

A self-dual 2-form � that is also null, that is, � ^ � = 0, is decomposable and so

determines a real null vector K such that K � = 0. This K is unique up to scalings.

The principal null directions of the conformal tensor are the vectors determined by the

null self-dual 2-forms satisfying

� ^ C � � = 0: (9)

If an eigenvector of C is null, it determines a repeated principal null direction. In fact, al-

gebraically special spacetimes may be characterised as those admitting a null eigenvector.

If C has two null eigenvectors, then both of them must have the same eigenvalue and the

spacetime must be either type D or conformally 
at.
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3. Cli�ord algebras and spinors.

The spinor space at a point p ofM is a 4-dimensional complex vector space which carries

an irreducible representation of the complex Cli�ord algebra generated by the cotangent

space at p, T

�

p

M. Denoting Cli�ord multiplication by juxtaposition, the Cli�ord algebra

is generated by taking all possible products of vectors in the complexi�ed cotangent space,

together with the relations

e

a

e

b

+ e

b

e

a

= 2g

ab

: (10)

In four dimensions, the Cli�ord algebra is isomorphic to the algebra of 4 � 4 complex

matrices. A convenient basis for the Cli�ord algebra is

f1; e

a

;

1

2

[e

a

; e

b

]; e

a

z; zg

where [ ; ] is the Cli�ord commutator and z = e

0

e

1

e

2

e

3

. In the physical literature, it is

usual to use a 
-matrix representation of the Cli�ord algebra. In that case the covectors

e

a

are represented by 


a

, the commutator

1

2

[e

a

; e

b

] by �

ab

and iz by 


5

. The Cli�ord

algebra can also be regarded as the space of complex exterior forms of T

�

p

M, with the

Cli�ord product being related to the exterior product and interior derivative by

e

a

! = e

a

^ ! +X

a

! 8 ! 2 �(T

�

p

M): (11)

Thus any form can be considered a Cli�ord element, and vice-versa. The basis for the

exterior algebra corresponding to the Cli�ord basis given above is

f1; e

a

; e

ab

; �e

a

; �1g

where we introduce the abbreviation e

ab

= e

a

^ e

b

.

Since z

2

= �1 the spinor space may be split into two 2-dimensional eigenspaces of z

with eigenvalues �i. Eigenspinors of z with eigenvalue �i will be called even, while those

with eigenvalue +i will be called odd. In the following we will primarily be using even

spinors, since they may be used to construct self-dual 2-forms (see Section 4.). Spinor

space also possesses a C -linear anti-symmetric inner product ( ; ). Denoting the action

of a form on a spinor by left-multiplication, the inner product has the property that for

spinors u and v and a p-form !,

(!u; v) = (�1)

bp=2c

(u; !v): (12)

There is also a representation independent complex conjugate, the charge conjugate. The

charge conjugate of u is written u

c

.

Provided that certain topological conditions are met, we can form a spinor bundle over

M. The spinor bundle has the property that each �bre over a point p 2 M carries an

irreducible representation of the Cli�ord algebra of T

�

p

M. A spinor �eld is then a section

of the spinor bundle.
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4. Shear-free vector �elds and spinors.

A shear-free vector �eld may be characterised as a vector �eld K which generates a

conformal isometry on its conjugate space K

?

= fX 2 �TM : g(X;K) = 0g. Note that

if K is null then K 2 K

?

, and in order for the shear of K to be well-de�ned we require

K to be geodesic. If K is null and real then it may be related to an even spinor u by

K = (iu

c

; e

a

u)X

a

: (13)

Then K is a null shear-free geodesic vector �eld if and only if

(u;r

X

a

u)e

a

u = 0: (14)

(See, for example, [4]). A convenient restatement of this equation is that u satis�es

c

r

X

u�

1

4

X

[

b

Du = 0 8 X 2 �TM (15)

where X

[

is the 1-form such that X

[

(Y ) = g(Y;X) for all Y 2 �TM. We also introduce

a GL(1; C )-gauged covariant derivative

c

r with Dirac operator

b

D = e

a

c

r

X

a

, where

c

r

X

u = r

X

u+ qA(X)u (16)

b

Du = Du+ qAu (17)

and A is a complex 1-form. The action of

c

r on a spinor will depend on the constant

q, referred to as the GL(1; C )-charge of u. In particular, it will reduce to the ordinary

covariant derivative when acting on spinors with zero charge. The gauged covariant

derivative must also obey a Leibniz rule with respect to Cli�ord products and the Cli�ord

action on spinors. Thus for a form (or Cli�ord element) ! with charge q

1

and a spinor u

with charge q

2

we have

c

r

X

(!u) =

c

r

X

!u+ !

c

r

X

u

= r

X

!u+ q

1

A(X)!u+ !r

X

u+ q

2

A(X)!u

= r

X

(!u) + (q

1

+ q

2

)A(X)!u (18)

so the spinor !u has charge q

1

+ q

2

. Spinors obeying (15) will be referred to as shear-free

spinors. The shear-free spinor equation can be considered a GL(1; C )-covariant twistor

equation. Clearly shear-free spinors with zero charge are twistors.

Di�erentiating (15) introduces the curvature operator

^

R(X;Y ) of

c

r. This is related

to the curvature operator of r by

^

R(X;Y )u = R(X;Y )u+ qY X Fu (19)

where F = dA is the GL(1; C )-curvature. Since the curvature operator on spinors is

related to the curvature 2-forms by

R(X;Y )u =

1

2

e

a

(X)e

b

(Y )R

ab

u (20)



140 P. CHARLTON

the shear-free spinor equation has the integrability condition

R

ab

u+ 2qX

b

X

a

Fu�

1

2

(e

b

c

r

X

a

� e

a

c

r

X

b

)

b

Du = 0: (21)

Cli�ord multiplication on the left by e

a

gives

P

b

u� 2qX

b

Fu+

c

r

X

b

b

Du+

1

2

b

D

2

u = 0: (22)

A further multiplication by e

b

leads to

Ru� 4qFu+ 3

b

D

2

u = 0: (23)

An even spinor u determines a null self-dual 2-form � by

� = �

1

8

(u; e

ab

u)e

ab

: (24)

The real null vector K associated with � is the same as that determined by u in (13). If

u is shear-free, then (21){(23) and (5) show that

C

ab

u = q

�

1

6

e

ab

F +

1

2

Fe

ab

�

u: (25)

Then (24) and (25) show that � satis�es (9), and hence K is a principal null direction.

Furthermore, if the spacetime is in the generalised Goldberg-Sachs class, K must be a

repeated principal null direction and thus � is an eigenvector of the conformal tensor. If

C � � = �� for a complex function � then from (24) and (25) it can be shown that

qFu = �3�u: (26)

5. Debye potentials for the massless Dirac equation.

Let f be a complex scalar �eld with GL(1; C )-charge �1, that is,

c

r

X

f = r

X

f �A(X)f: (27)

Given an even shear-free spinor u with charge +1, we can construct a GL(1; C )-neutral

spinor � by taking

� =

^

dfu+

1

2

f

b

Du (28)

where

^

df = e

a

^

c

r

X

a

f

= df � fA (29)
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is the gauged exterior derivative of f . Note that

^

d

2

f = �fF . Acting on � with the Dirac

operator produces

D� = e

a

�

c

r

X

a

^

df:u+

^

df

c

r

X

a

u+

1

2

c

r

X

a

f:

b

Du+

1

2

f

c

r

X

a

b

Du

�

=

^

d

2

fu�

^

d

�

^

dfu+ e

a

^

df

c

r

X

a

u+

1

2

^

df

b

Du+

1

2

f

b

D

2

u

= �fFu�

^

d

�

^

dfu+

1

2

f

b

D

2

u+ 2

�

c

r

d

gradf

u�

1

4

^

df

b

Du

�

(30)

where

d

gradf is the dual of

^

df . De�ning the gauged Laplace-Beltrami operator by

^

4 = �(

^

d

�

^

d+

^

d

^

d

�

) (31)

where

^

d

�

= �

^

d� we have

^

4f = �

^

d

�

^

df . Applying the shear-free condition (15) and the

integrability condition (23) to (30) we have

D� =

^

4fu� fFu+

1

2

f

b

D

2

u

=

^

4fu� fFu+

1

2

f

�

�

1

3

Ru+

4

3

Fu

�

=

�

^

4f �

1

6

Rf

�

u�

1

3

fFu: (32)

If the spacetime is in the generalised Goldberg-Sachs class then by (26) we have Fu =

�3�u, so

D� =

�

^

4f �

1

6

Rf + �f

�

u: (33)

Thus � is a solution of the massless Dirac equation whenever f satis�es

^

4f �

1

6

Rf = ��f: (34)

Conversely, given a second shear-free spinor with opposite charge to u and a solution

of the massless Dirac equation, their inner product is a function satisfying (34). Let v be

an even shear-free spinor with charge �1. Then for an arbitrary spinor  the function

f = (v;  ) has charge �1. The action of the gauged Laplace-Beltrami operator on f is

^

4f = (

c

r

X

a

c

r

X

a

v;  ) + (

c

r

X

a

v;r

X

a

 ) + (

c

r

X

a

v;r

X

a

 )

+(v;r

X

a

r

X

a
 )� (

c

r

r

X

a

X

a
v;  )� (v;r

r

X

a

X

a
 )

= (

c

r

X

a

c

r

X

a

v �

c

r

r

X

a

X

a

v;  ) + 2(

c

r

X

a

v;r

X

a

 )

+(v;r

X

a

r

X

a

 �r

r

X

a

X

a

 ): (35)

Now the square of the gauged Dirac operator may be written as

b

D

2

 =

c

r

X

a

c

r

X

a

 �

c

r

r

X

a

X

a

 �

1

4

R + qF (36)
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and so

^

4f = (

b

D

2

v +

1

4

Rv + Fv;  ) + 2(

c

r

X

a

u;r

X

a

 )

+(v;D

2

 +

1

4

R ): (37)

By (12), (15) and (23) we have

^

4f = (�

1

3

Rv �

4

3

Fv +

1

4

Rv + Fv;  )

+

1

2

(e

a

b

Dv;r

X

a

 ) + (v;D

2

 +

1

4

R )

=

1

6

Rf �

1

3

(Fv;  ) +

1

2

(

b

Dv;D ) + (v;D

2

 ): (38)

Using the fact that u and v are shear-free spinors with opposite charge, we can deduce from

(25) that the two null 2-forms corresponding to u and v are eigenvectors of the conformal

tensor with the same eigenvalue. Thus a spacetime admitting a pair of shear-free spinors

with opposite charge is necessarily typeD and simultaneously in the generalised Goldberg-

Sachs class. Equation (26) must also hold for v, so Fv = 3�v. Then

^

4f �

1

6

Rf = ��f +

1

2

(

b

Dv;D ) + (v;D

2

 ) (39)

thus f is a solution of (34) whenever D = 0.

We de�ne a self-dual (but non-null) 2-form ! by

! = �

1

8

(u; e

ab

v)e

ab

: (40)

It can be shown that u and v are shear-free spinors with opposite charge if and only if !

satis�es the equation

3r

X

! = X d! �X

[

^ d

�

!: (41)

Solutions of this equation are known as conformal Killing-Yano tensors. The spinorial

counterpart of this object is known as a valence 2 Killing spinor. The Killing spinor �

associated with ! may be written as

� =

1

2

(u
 v + v 
 u) : (42)

6. Symmetry operators for the massless Dirac equation.

The operations described in Section 5. provide a scheme for producing new solutions of

the massless Dirac equation from old ones. Given an arbitrary spinor  and a pair of
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shear-free spinors u and v with opposite charge, the function f = (v;  ) satis�es (39). So

for � as de�ned in (28) we have

D� =

�

^

4f �

1

6

Rf + �

�

u

=

�

1

2

(

b

Dv;D ) + (v;D

2

 )

�

u (43)

hence D� = 0 whenever D = 0. It is possible to express this as a symmetry operator

for D, that is, an operator which maps the kernel of D into itself. The gauged covariant

derivative is compatible with the spinor inner product, so

^

df = (

c

r

X

a

v;  )e

a

+ (v;r

X

a

 )e

a

=

1

4

(e

a

b

Dv;  )e

a

+ (v;r

X

a

 )e

a

(44)

thus,

� =

1

4

(e

a

b

Dv;  )e

a

u+ (v;r

X

a

 )e

a

u+

1

2

(v;  )

b

Du: (45)

This may be written using the conformal Killing-Yano tensor ! de�ned in (40) as

� = e

a

!r

X

a

 +

2

3

d! �

2

3

d

�

! �

[�

1

; �

2

] � !

4! � !

D : (46)

In this expression �

1

and �

2

are the 2-forms corresponding to u and v respectively via

(24), and the symbol � is the inner product on 2-forms de�ned by

� �  = � � (� ^ � ) 8 �; 2 ��

2

M: (47)

Note that the Cli�ord commutator of two 2-forms is also a 2-form. Then (43) and (46)

show that

D

�

e

a

!r

X

a

 +

2

3

d! �

2

3

d

�

! 

�

= 0 (48)

whenever D = 0. The operator K

!

de�ned by

K

!

= e

a

!r

X

a

+

2

3

d! �

2

3

d

�

! (49)

must then be a symmetry operator for the massless Dirac equation.

While in this instance, ! is speci�cally self-dual and non-null, a straightforward cal-

culation utilising (41) and it's derivatives shows that

[D;K

!

] =

�

!D �

1

3

d! + d

�

!

�

D (50)

from which it is clear that K

!

is a symmetry operator, without requiring ! to be self-dual

or non-null. Operators such as K

!

whose commutator with D is of the form RD (where

R is another operator) are called R-commuting.
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A slight modi�cation of K

!

leads to what has been referred to as a generalised total

angular momentum operator for the Dirac equation [5]. Putting

L

!

= z

�

e

a

!r

X

a

+

2

3

d! �

2

3

d

�

! � !D

�

(51)

it can be veri�ed that

[D;L

!

] = �

2

3

zd

�

!D (52)

whenever ! is a conformal Killing-Yano tensor. This is essentially the component of

the general R-commuting operating found in [8] which is constructed from a conformal

Killing-Yano tensor. We observe that L

!

commutes with D when d

�

! = 0, in which case

! is called a Killing-Yano tensor. When d

�

! = 0 the operator L

!

reduces to that found

in [5], and L

!

is a symmetry operator for the massive Dirac equation.

7. Conclusion.

We have shown that in a spacetime which admits a pair of shear-free spinors with opposite

charge, solutions of the massless Dirac equation may be found by solving a complex scalar

wave equation. Such spacetimes must be Petrov type D and in the generalised Goldberg-

Sachs class, or else conformally 
at. Furthermore, since solutions of the massless Dirac

equation can be used to generate solutions of the required scalar equation, we have a

symmetry operator for the massless Dirac equation which may be written in terms of

the non-null self-dual conformal Killing-Yano tensor determined by the shear-free spinors.

Taking the commutator of this operator with the Dirac operator shows that satisfying

the conformal Killing-Yano equation is su�cient for the operator to be a symmetry oper-

ator. In [1] we present a generalisation of this operator to all dimensions and signatures,

using a conformal Killing-Yano tensor of arbitrary degree. While the existence of a con-

formal Killing-Yano tensor places severe constraints on a spacetime, Penrose and Walker

[12] have demonstrated that every vacuum type D spacetime admits a valence 2 Killing

spinor, which is equivalent to the existence of a conformal Killing-Yano tensor.
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