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Abstract

The claims by Yilmaz and Alley that general relativity does not give the correct

results for the attraction between thin planes shells and thin spherical shells are

investigated and found to be incorrect.

1. Introduction

In recent papers Yilmaz [16] and Alley [1] have called into question the validity of Ein-

stein's 1915{1916 theory of gravitation, the general theory of relativity. In particular,

they have asserted that Einstein's theory is essentially a 1{body test particle theory of

gravitation, that it does not contain 2{body solutions, and that it does not give correct

answers for the gravitational attraction between two in�nite plane slabs of matter or be-

tween two concentric shells of matter (Yilmaz[16, p 116]). These claims are in striking

contradiction with quite well{known calculations in general relativity, but the relevant

papers are not cited by either Yilmaz or Alley. For example, Horsk�y [8] has shown that

thin parallel shells of incoherent matter are attracted towards each other in hyperbolic

motion in general relativity. For the case of a spherical shell in general relativity the

fundamental equations have been given by Gerlach [5], including the case where the shell

has internal pressure. It is a straightforward calculus exercise to show that Gerlach's

results reduce to the well{known Campbell{H�enon [3, 6] results in the Newtonian limit.

The additional equations necessary to deal with the case in general relativity where there

is an interaction between a number of spherically symmetric concentric shells of matter

have been given by Fackerell [4] in an extension to general relativity of the Campbell{

H�enon method for spherical clusters. Consequently there are good grounds to look very

carefully at the calculations in the papers by Yilmaz and Alley. We �rst examine their

slab calculations.

2. Errors in slab calculation by Yilmaz and Alley

A key part of the Yilmaz{Alley claim that the general theory of gravitation is incorrect

is centered in their assertion that in general relativity, plane slabs do not attract one

another. Yilmaz asserts in his paper that the plane{symmetric metric
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where � = �1 and � has the form � = Az +

1

2

�z

2

+ C, is a solution of the Einstein

gravitational �eld equations for plane slabs with a matter density � (note that we adopt

the conventions of Misner, Thorne and Wheeler [11], except that we shall put in the

relevant powers of c). There is a prima facie case that that Yilmaz's assertion cannot

be true, since his claimed solution has the slabs at �xed positions, and, as is well known

(c.f. Horsk�y), the slabs would have to be supported in their �xed positions by unphysical

stresses. But in any case, let us calculate and check Yilmaz's assertion.

In performing calculations, it is very important not to lose sight of the fact that there

is a well{de�ned procedure for �nding solutions in general relativity:-

1. A metric (or equivalently a tetrad) with an appropriate symmetry and therefore

appropriate general dependence upon the coordinates is chosen, along with an ap-

propriate energy{momentum tensor T

��

, e.g., for vacuum, electrovac, pressure{free

dust, or for a perfect 
uid with a given equation of state.

2. The assumed metric or tetrad is then used to compute the Einstein tensor G

��

.

3. The Einstein �eld equations

G
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=

8�G

c

2

T
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are solved in each region.

4. Finally the solutions in the di�erent regions are joined together using the junction

conditions
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where S

ij

is the surface energy{momentum tensor of the surface layer between the

di�erent regions. Of course, if there is no surface layer, S

ij

= 0 and the relevant

condition is continuity of the extrinsic curvature tensor. This condition is not nec-

essarily equivalent to continuity of the normal derivative of some metric coe�cient,

as Yilmaz and Alley seem to claim in their papers.

Unfortunately, as we shall see, Yilmaz and Alley have not carried out this program in

their discussions of general relativity. Instead they appear to have imposed on general

relativity the ideas of Yilmaz's new theory. Because of this, in a number of signi�cant

cases, what they claim as a solution in general relativity is no solution at all.

With this warning in mind, we check Yilmaz's calculation by taking the orthonormal

tetrad
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We �nd that, in the case where � = 1, the non{zero orthonormal tetrad components of

the Einstein tensor are given by

G

00

= �4e

�6�

�

00

(z);

G
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= e

�6�

�

00

(z);

G

22

= e
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00

(z);

G

33
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Consequently, if we are dealing with incoherent matter, we must have G

11

= G

22

= 0, so

that �

00

(z) = 0, and this implies that G

00

= 0, so that the density of matter is zero. On

the other hand, if we require G

00

to be non{zero, we �nd that there must be transverse

stress of a non{physical kind. In any case, it is simply not true that the matter density �

is connected to � by the formula given by Yilmaz.

A similar problem arises in the case where � = �1. In that case we have by simple

calculation the following tetrad components of the Einstein tensor:-

G
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G
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G
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In this case of necessity the matter density has to be zero, whereas a transverse stress is

still possible.

The error in Yilmaz's paper [16] seems to go back to a 1979 publication [15] in which he

makes calculations relating to plane{symmetric situations in general relativity. There he

claims (correctly) that the source{free Einstein equations for the plane{symmetric metric
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where �, � and � are functions of z alone, give rise to the equations
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(Actually Yilmaz's paper does not have the \= 0" of the last equation, but this is necessary

for source{free space).

Yilmaz then goes on to make the assertion that these equations imply that either

� = 4� and � = 6� or � = 0 and � = �2�. It turns out that this statement is true if and

only if � is a linear function of z. However, in the problem with which Yilmaz and Alley

are concerned in their later papers, �

0

(z) is not a constant, so that it is invalid to assume
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that either � = 4� and � = 6� or � = 0 and � = �2�. Consequently their assumed form

of the metric is not correct.

To prove these statements let us look at the general solution of Yilmaz's equations.

From the last equation we readily have the result that either �

0

= 0 or �

0

= 4�

0

, so that

after a trivial integration and absorption of a constant of integration we can correctly

assert that either � = 0 or � = 4�. In the case where � = 0, the �rst equation is satis�ed

identically and the second equation becomes

2�
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�

0
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which, if �

0

6= 0, has as its solution

� = 2 log j�

0

j � 2�+ C;

where C is a constant. Only in the case �

0

(z) = constant is it possible to choose the

constant of integration to make � = �2�.

The situation is no better in the case where � = 4�. For then the two remaining

equations become identical, namely,

�

0

�

0

= 2�

00
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02

which has the solution, for �

0

6= 0,

� = 2 log j�

0

j+ 6�+ C:

Again only in the case where �

0

(z) = constant is it possible to choose the constant of

integration to make � = 6�.

Since in his later work on plane slabs Yilmaz has �

00

(z) 6= 0, it is no longer valid to

assume, as he does, that either � = 4� and � = 6� or � = 0 and � = �2�. Consequently

we have to conclude that the form of the metric adopted by Yilmaz for plane symmetry

is incorrect. Alley also has similar incorrect statements about general relativity in the

section of his paper where he claims to calculate the general relativistic solution for two

parallel plane slabs. Note also that Alley's metric is not consistent with a correct stress{

energy tensor, i.e., one that gives a positive mass density � without unphysical transverse

stresses. This is not surprising, because in a pure gravitational problem the plane slabs

would have to move towards one another.

3. Correct general relativistic plane slab calculations

There are a considerable number of calculations that have been carried out in general

relativity for situations involving plane slabs of matter, either of incoherent dust or of

compressible matter with a prescribed equation of state. Notable among these are the

various calculations by A.H. Taub [13] and by J. Horsk�y [7, 9] (neither cited by Yilmaz

or Alley). However, it is not without interest to calculate directly the interaction of two
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thin plane shells of matter, since this shows up most clearly the errors in the statements

by Yilmaz and Alley.

The way to handle thin shells of matter in general relativity has been discussed with

great clarity by Israel [10]. The regions between the shells are empty space metrics. We

join these empty space solutions by the Synge{O'Brien junction conditions. For the empty

space metric with plane symmetry, that is, admitting the three Killing vectors @

x

, @

y

and

y@

x

� x@

y

, we take the form
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where � and � are functions of t and z.

Now Taub [12] has demonstrated that the general empty space solution of these equa-

tions may be written as
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where k is a constant. Note carefully however that the coordinate transformations involved

in writing the solution in this form may involve the introduction of comoving coordinates

for the problem. An example of this occurs in the next Section. We now suppose that we

have two empty regions with such symmetry, separated by a thin plane shell of matter

with surface density � and pressure p.

+�

�

p

k = k

+

k = k

�

Figure 1: Thin shell of surface density � and surface pressure p.

In general the k values will be di�erent in the empty regions on the two sides of the

plane shell. Since the coordinates x and y are Killing{de�ned, we may identify x and y

on the two sides of the shell. The metric on one side, denoted by +, will therefore be
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and on the other side, denoted by �, the metric will be
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Following Israel, we need now to introduce intrinsic coordinates in the shell. The most

convenient choice is

�

0

= �; proper time following shell,

�

1

= x; Killing de�ned coordinate,

�

2

= y; Killing de�ned coordinate,
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since all these coordinates are continuous across the shell.

Next we consider the induced metric in the shell. Let the parametric equations of the

+ side of the shell be given by

z = Z

+
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t = T

+

(� )

and let the parametric equations of the � side of the shell be given by
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From the � side, the induced metric is
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Because of the requirement that the induced metric be the same for both imbeddings, we

must have
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The next step is to calculate the extrinsic curvature tensor K
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and n is the unit normal to the shell (Note again that we are using the sign choice of

Misner, Thorne and Wheeler). We have
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Of course the 4{velocity vector of the shell is given by
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These expressions apply on either side with the appropriate subscript. The non{zero

Christo�el symbols for the + side are given by
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Israel's fundamental equations for the discontinuity in K
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are
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Here the intrinsic energy{momentum tensor S
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is given by
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Voorhees [14] has shown that the surface energy{momentum tensor may be found in

terms of surface kinetic theory with a distribution function f as
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where � is the rest mass of a typical particle in the surface layer and p
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momentum of such a particle. We readily �nd that the intrinsic momentum components

of a typical particle in the shell are

p

1

= � cos ;

p

2

= � sin ;

p

0

= �c

"

�

2

c

2

+

�

2

1 + kZ

#

1=2

;

where � is the magnitude of the transverse momentum and the auxiliary angle  ranges

over 0 �  � 2�. A useful case is where all of the particles have the same rest mass �
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Whatever the choice of f , the fundamental equations of motion of the shell are
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4. Case of pressure{free shells

The simplest case, namely, where there are two parallel thin shells of equal surface density

� and zero transverse pressure in the shells, was considered by Horsk�y [8] long ago. Since

his treatment is succinct it may be worthwhile to amplify his argument. It turns out that

k = 0 in the region between the shells so that between the shells we have Minkowski

spacetime (this will evident from the validity of the solution obtained).

1
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� �

k

+

= �
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2

k = 0

k
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=
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2

Z

+

= 0Z

�

= 0

Figure 2: Parallel thin shells of equal surface density � and zero surface pressure.

Since there are two shells, it is convenient to change our notation slightly, as indicated

in the diagram, namely, to label the inside of the right shell as 2 and to label the inside of

the left shell as 1, the outside of the left shell being denoted by �. Consider the junction

conditions for the shell on the right. From the fact that k = 0 in the middle, we must have

Z

+

(� ) = 0. Note that this implies that in the exterior Z

+

= 0 is a comoving coordinate

for the shell. We then �nd that equation (I) gives

k

+

= �
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c

2

so that the surface density � must be a constant and k

+

must be negative. Equation (II)

then gives, for p = 0,
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which shows that we do not have comoving coordinates on the inside. In view of the

statements by Yilmaz and Alley it needs to be noted that this result reduces, for small

velocities, (j

_

Z

2

=cj << 1), to precisely the classical result for the acceleration of the shell

of such a shell. The solution is of course that of hyperbolic motion. If we write 2�G� = a,

we �nd that the solution is given by
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where �

2

is the proper time on the right{hand shell and �
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are constants.

The solution is completed by setting k
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with a corresponding solution, namely,
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where �

1

is the proper time on the left{hand shell and �

10

, Z

10

and T

10

are constants.

5. Spherical Shells

As mentioned in the introduction, the calculations for spherical shells have been carried

out by a number of authors. The most general case, for spherical shells of matter with

isotropic transverse pressure was carried out by Gerlach [5]. In view of the claims by Yil-

maz that the general relativity result for spherical shells does not reduce to the appropriate

Newtonian limit, it is perhaps worthwhile spending a little time on this case, particularly

since it involves two �nite bodies. We shall see that Yilmaz's claims concerning spherical

shells in general relativity are also false.

Consider a spherically symmetric thin shell of matter, for which the mass outside of

the shell is m

2

and the mass inside the shell is m

1

(the mass inside the shell could be due

to an interior shell or to a black hole at the centre). In the empty space region outside

the shell the metric is
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+
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�

and for the region between this shell and the next interior concentric shell we have the

metric
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:

Intrinsic coordinates for the shell may be taken as �

0

= � , the proper time on the shell,

�

1

= � and �

2

= � since the Killing de�ned coordinates � and � may be taken to be

continuous through the shell. The parametric equations of the outside of the shell are

then

r = R

+

(� )

t = T

+

(� )

and the parametric equations of the inside of the shell are

r = R

�

(� )

t = T

�

(� ):
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From the inducedmetric we �nd thatR

+

(� ) = R

�

(� ) = R(� ), say. However, Schwarzschild

time is not continuous across the shell. From the continuity of the induced metric we �nd

that

dT

+

d�

=

1

�

1�

2Gm

2

c

2

r

�

 

_

R

2

c

2

+ 1 �

2Gm

2

c

2

R

!

1=2

and

dT

�

d�

=

1

�

1�

2Gm

1

c

2

r

�

 

_

R

2

c

2

+ 1 �

2Gm

1

c

2

R

!

1=2

:

For the components of the tangent vectors to the shell we have on the outside of the shell

e

�

(0)

= [

_

T

+

(� );

_

R(� ); 0; 0];

e

�

(1)

= [0; 0; 1; 0];

e

�

(2)

= [0; 0; 0; 1]

and the components of the unit normal are

n

�

= [

_

R

f

+

c

2

; f

+

_

T

+

(� ); 0; 0]

where f

+

=

�

1 �

2Gm

2

c

2

R

�

. Similar expressions apply to the inside with subscript � and

with f

�

=

�

1�

2Gm

1

c

2

R

�

. The non{zero Christo�el symbols for the m

2

side are given by

�

t

rt

=

Gm

2

f

+

c

2

R

2

;

�

�

r�

=

1

r

; �

�

��

= � sin � cos �;

�

�

r�

=

1

r

; �

�

��

= cot �;

�

r

tr

=

Gm

2

f

+

c

2

R

2

; �

r

rr

= �

Gm

2

f

+

c

2

R

2

; �

r

tt

=

f

+

Gm

2

R

2

;

�

r

��

= �f

+

R; �

r

��

= �f

+

R sin

2

�:

where f

+

=

�

1�

2Gm

2

c

2

R

�

. Similar expressions hold for the m

1

side. The non{zero com-

ponents of the K

+

ij

are given by

K

+

11

=

K

+

22

sin

2

�

= �Rf

+

_

T

+

and

K

+

00

=

�

R +

Gm

2

c

2

R

f

_

T

+

:
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For shells of particles that all have the same rest mass �

0

and squared angular momentum

�

2

0

, the surface density � and the pressure p are found to be given by

� =

A

4�R

2

c

h

�

2

0

c

2

+ �

2

0

=R

2

i

1

2

and

p =

A�

2

0

c

8�R

4

h

�

2

0

c

2

+ �

2

0

=R

2

i

�

1

2

:

The equations of motion are then found to be given by

 

_

R

2

c

2

+ 1 �

2Gm

1

c

2

R

!

1

2

�

 

_

R

2

c

2

+ 1 �

2Gm

2

c

2

R

!

1

2

=

4�G

c

2

R�

with the conservation equation

d

d�

�

R

2

�

�

+ 2R

_

R

p

c

2

= 0:

Furthermore,

dT

+

d�

=

1

�

1�

2Gm

2

c

2

R

�

 

_

R

2

c

2

+ 1�

2Gm

2

c

2

R

!

1

2

and

dT

�

d�

=

1

�

1�

2Gm

2

c

2

R

�

 

_

R

2

c

2

+ 1�

2Gm

1

c

2

R

!

1

2

:

From this it can be shown by straightforward algebra that

1

c

2

 

dR

d�

!

2

= �1 +

G

c

2

(m

1

+m

2

)

R

+

G

2

c

4

(m

2

�m

1

)

2

K

2

+

1

4

K

2

R

2

where

K =

GA

c

3

h

�

2

0

c

2

+ �

2

0

=R

2

i

1

2

:

We then have the important result that in the Newtonian limit this reduces to the result

obtained by Campbell and H�enon, viz,

1

2

 

dR

dt

!

2

=

Gm

1

R

+

1

2

G�m

R

�

h

2

2R

2

where h =

�

0

�

0

is the angular momentum per unit mass and �m = m

2

� m

1

is the

increment in the mass, to Newtonian order, due to the presence of the shell. The

1

2

in

front of the second term on the right hand side is a subtle term that comes about, due, in

Newtonian order, to the gravitational potential energy of the shell acting on itself. The

fact that the general relativity result has this precise Newtonian limit refutes Yilmaz's
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claim that general relativity is only a 1{body problem and gives the wrong answer for

shells of matter.

For completeness the proof that the general relativity result reduces to the Campbell{

H�enon formula is given.

We have in the �rst place that K =

4�G

c

2

R

2

� so

1

c

2

 

dR

d�

!

2

= �1 +

G(m

1

+m

2

)

c

2

R

+

1

4

16�

2

G

2

R

2

�

2

c

4

+

G

2

c

4

(m

2

�m

1

)

2

16�

2

G

2

R

4

�

2

=c

2

= �1 +

�

m

2

�m

1

4�R

2

�

�

2

+

G(m

1

+m

2

)

c

2

R

+

4�

2

G

2

R

2

�

2

c

4

:

We now need to compute the expression

�

m

2

�m

1

4�R

2

�

�

2

correct to terms in

1

c

2

. We have

�

m

2

�m

1

4�R

2

�

�

2

=

 

m

2

�m

1

A�

0

!

2

 

1 +

�

2

0

�

2

0

c

2

R

2

!

�1

=

 

m

2

�m

1

A�

0

!

2

�

 

m

2

�m

1

A�

0

!

2

�

2

0

�

2

0

c

2

R

2

:

Now since A is the total number of particles in the shell, we have to Newtonian order

m

2

= m

1

+A�

0

so that

 

m

2

�m

1

A�

0

!

= 1 and we are left with

1

2

 

dR

dt

!

2

=

1

2

G(m

1

+m

2

)

R

�

h

2

2R

2

since to this order � = t. A simple rearrangement then gives the Campbell{H�enon result.

6. Conclusion

We have now investigated some aspects of Yilmaz's assertions that general relativity is

essentially a 1{body test particle theory of gravitation, that it does not contain 2{body

solutions, and that it does not give correct answers for the gravitational attraction between

two in�nite plane slabs of matter or between two concentric shells of matter.

In the �rst place we have seen the the solution claimed by Yilmaz for a con�guration of

two parallel in�nite plane slabs of matter is not a solution of the Einstein �eld equations.

In any case, the con�guration described by Yilmaz (plane shells at a �xed distance apart)

does not make physical sense, and requires unphysical stresses for its maintenance, as was

pointed out inter alia by Horsk�y long ago.

Second, we have seen that general relativity does in fact give the correct Newtonian

limit in the case of both plane and spherical shells of matter. In the spherical case the

Newtonian result itself, to which general relativity reduces, has a term which clearly
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indicates that we are dealing with a many{body theory. Consequently Yilmaz's assertion

that general relativity is a 1{body theory which does not reduce to the correct Newtonian

result in the case of planes shells or spherical shells must be rejected.

Furthermore, we have seen clear indications that the reason for Yilmaz's incorrect

assertions is that he has imposed on general relativity extraneous ideas about the form

of the metric for plane distributions of matter, and he has not computed solutions in

general relativity according to the well{understood procedures which are clearly written

up in the standard expositions of general relativity, e.g., the book by Misner, Thorne and

Wheeler [11]. In the case of spherical shells he does not seem to have performed any

calculations.

Finally it needs to be pointed out that, apart from the calculations recapitulated above,

there are many more examples of careful and detailed calculations in general relativity

that demonstrate that this theory is a many{body theory of gravitation which gives

close agreement with observation. In particular, the beautiful work on the gravitational{

radiation damping of compact binary systems which has been carried out by Blanchet,

Damour, Iyer, Will and Wiseman [2] is such an example.
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