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Abstract

We present the results of recent work on a gauge invariant approach to the grav-

itational perturbations of the Kerr space-time, using the modi�ed Newman-Penrose

formalism. The techniques used are a generalisation of those developed in the

Schwarzschild case. The perturbed Bianchi identities are written in a form involving

only certain tetrad and coordinate-gauge invariant �eld quantities. The integrability

conditions for the perturbed Bianchi identities then provide a system of gauge invari-

ant wave-like gravitational perturbation equations, and the transformations which

relate them to one another. The analysis is coordinate-free, and provides a geomet-

ric and gauge invariant explanation of the transformations relating the Teukolsky

equation and a Regge-Wheeler-like equation in the Kerr background. The elec-

tromagnetic and gravitational perturbations of the Reissner-Nordstrom space-time

can also be investigated using this approach. We present a gauge invariant coupled

wave-like electromagnetic-gravitational perturbation equation in this case, which

may be decoupled.

1. Introduction

The perturbations of the Kerr-Newman black hole have de�ed many attempts at clari�-

cation in the past (see for example Chandrasekhar [1], Fackerell [2]). In part this is due to

the complicated nature of the coupling between electromagnetic and gravitational �elds

in electrovac space-times, and to the presence of angular momentum in the background.

An understanding of the perturbations of the Kerr-Newman black hole is important since

the Kerr-Newman black hole is the most general stationary black hole solution of the

Einstein equations. Although there is widespread belief that Kerr-Newman black holes

are stable to linear perturbations, there is no proof that this is the case.

Recently Fernandes and Lun [3] have developed a successful gauge invariant technique

for investigating the gravitational perturbations of the Schwarzschild black hole, using the

modi�ed Newman-Penrose formalism. An extension of this approach to the perturbations

of the Kerr and Reissner-Nordstr�om black holes is an important precursor to the study of

the Kerr-Newman space-time. In the Kerr case, the e�ects of angular momentum on the

perturbation problem can be investigated without the added complication of a background

electric charge. In the Reissner-Nordstr�om case, the e�ects of charge can be investigated
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in the absence of angular momentum. Once a full gauge invariant analysis of the Kerr

and Reissner-Nordstr�om black holes is complete, we will be in a strong position to attack

the perturbations of the Kerr-Newman space-time.

The basis for the gauge invariant formalism developed in [3] is that the perturbed

Bianchi identities, like the perturbed Maxwell equations, are gauge invariant:

$

u

�

R

a

b[cd;e]

�

= 0

where R

a

b[cd;e]

refers to the background space-time, and u

a

is an arbitrary vector �eld

(refer to Lun [4], Stewart and Walker [5]). However, in contrast to the Maxwell scalars in

vacuum backgrounds, the usual Newman-Penrose �eld quantities in the perturbed Bianchi

identities in Schwarzschild space-time are not gauge invariant (with the exception of 	

4B

and 	

0B

). Since they are gauge invariant, the perturbed Bianchi identities allow the

de�nition of a set of new gauge invariant �eld quantities, which are boost- and spin-

weighted quantities related to the Newman-Penrose Weyl scalars and spin coe�cients.

The signi�cance of these �eld quantities is that they can be expressed as gauge invariant

combinations of the relevant perturbed metric components. The Bianchi identities are

then rewritten solely in terms of these new gauge invariant �eld quantities.

When written in this form, we view the Bianchi identities as the gravitational ana-

logues of the Maxwell equations. Thus, modelling our approach on the electromagnetic

perturbations of the Schwarzschild black hole, we derive a system of gauge invariant grav-

itational wave equations, and the transformations relating them to one another, from the

integrability conditions for the perturbed Bianchi identities. The wave equations are the

spin-weight �2 Bardeen-Press [6] equations, two spin-weight 0 (gauge invariant) Regge-

Wheeler [7] equations, and two new spin-weight �1 gravitational wave equations. The

transformations between the equations require some higher-order commutators, which

can be derived from the Newman-Penrose commutation relations. Although the Zerilli

[8] equation does not arise naturally in this approach, it can be constructed in a gauge

invariant manner. The transformations between the Bardeen-Press and Regge-Wheeler

equations derived by Chandrasekhar [1] and Sasaki and Nakamura [9, 10] arise in this

analysis in a geometric and gauge invariant manner. To a large extent, the success of

these techniques is due to the geometry of the background space-time.

The purpose of the present article is to present results of recent work on the gener-

alisation of the approach in [3] to the Kerr and Reissner-Nordstr�om space-times. More

extensive derivations and explanation of these results are given in [11], [12] and [13].

The approach to perturbations developed in [3] is heavily dependent upon expansion in

spin-weighted spherical harmonics, which in turn requires the introduction of coordinates.

In the Kerr case, expansion into tensorial spheroidal harmonics is not possible in general.

However our techniques do generalize in a natural way, with the advantage that we are

not required to make any use of coordinates at all in our perturbation analysis. Thus,

the approach which we used in the Schwarzschild case can be extended to treat the

electromagnetic and gravitational perturbations of the Kerr space-time.
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After identifying the appropriate gauge invariant �eld quantities in the Kerr case,

the perturbed Bianchi identities may be cast into a form involving only these quantities.

The perturbed Bianchi identities then give rise to gauge invariant wave-like perturbation

equations for our �eld quantities, and the transformations which relate one to another.

The equations are the well known spin-weight �2 Teukolsky [14] equation, the (gauge

invariant) Kerr analogue of the Regge-Wheeler equation, and a new gauge invariant grav-

itational perturbation equation. The transformation between the Teukolsky equation and

the analogue of the Regge-Wheeler equation arises in this way.

The extension of the gauge invariant formalism to the Kerr space-time is a technical

one. The presence of angular momentum in the Kerr background does not pose as great a

conceptual problem as the existence of electromagnetic charge in the Reissner-Nordstr�om

space-time. In contrast to the vacuum case, the perturbed Maxwell scalars, as well as most

of the perturbed Weyl scalars, are not gauge invariant in the Reissner-Nordstr�om back-

ground. Coupling between gravitational and electromagnetic �elds complicates the per-

turbation problem greatly. Furthermore, the structure of the Newman-Penrose equations

changes somewhat. Both electromagnetic and gravitational �eld quantities are present

in the perturbed Maxwell equations and Bianchi identities, and the perturbed Bianchi

identities involve a mixture of quantities of the opposite spin-weight. Nevertheless, the

gauge invariant technique can be extended to this case as well.

After identifying the gauge invariant �eld quantities in the Reissner-Nordstr�om case,

the perturbed Bianchi identities and Maxwell equations may be cast into a form involv-

ing only these quantities [13]. The integrability conditions provide a system of gauge

invariant coupled electromagnetic-gravitational perturbation equations for the Reissner-

Nordstr�om space-time. In the spin-weight 0 case, we have a coupled Regge-Wheeler-like

equation for the gauge invariant quantities Im(�

1B

) and Im(	

2B

). This equation may

be decoupled, providing a pair of gauge invariant Regge-Wheeler-type equations which

agree precisely with Moncrief's [15] equations for the \odd-parity" perturbations of the

Reissner-Nordstr�om black hole, derived using the Hamiltonian formulation. Therefore,

this work establishes a link between the modi�ed Newman-Penrose approach and the

Hamiltonian approach to perturbations. The results may be derived directly from the

Newman-Penrose equations in a naive fashion, without extending the gauge invariant for-

malism. In this article we present the results of this analysis, which are a precursor to

the full gauge invariant analysis of the perturbations of Reissner-Nordstr�om spacetime.

Naturally, all of the results presented here reduce to their Schwarzschild analogues

when the angular momentum or charge vanishes. We adopt the usual convention of

denoting perturbed quantities by a subscript B. Background quantities have no subscript.

2. Kerr Space-time

Describing Kerr space-time in the Newman-Penrose formalism, we have:

� = � = � = � = �

0

= �

1

= �

2

= 	

0

= 	

1

= 	

3

= 	

4

= 0;

u	

2

= 3%	

2

; u

0

	

2

= �3�	

2

; d	

2

= 3�	

2

; d

0

	

2

= �3�	

2

; (1)
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and

1

%

%

=

�

�

=

�

�

=

�

�

: (2)

Furthermore, from the Ricci identities, equations (1), (2), and the Newman-Penrose com-

mutators, we derive a more complete set of relationships between the derivatives of the

spin-coe�cients in Kerr background:

u% = %

2

; d% = (%� %)�; d

0

% = �%(� + �)� �(%� %)

u

0

� = ��

2

; d

0

� = �(�� �)�; d� = �(� + �) + � (�� �)

u� = %(� + �); u

0

� = �d�; d� = �

2

u� = �d

0

%; u

0

� = ��(� + �); d

0

� = ��

2

(3)

u

0

%� d

0

� = �%� � �� �	

2

; u� � d� = %� + �� +	

2

;

u�+ u

0

% = d� + d

0

� = 0; (4)

and

u� = %�+ �(� + � ) +

1

2

	

2

+

%

2%

	

2

;

where % 6= 0; � 6= 0. In the Schwarzschild limit,

%

%

= 1.

Using this information, together with the Newman-Penrose commutators, we derive

the following commutation relation for general (p; q) weighted quantities

�

u�

�

a+

p

2

�

%�

�

b+ 1 +

q

2

�

%

��

d �

�

a+

p

2

�

� +

�

b�

q

2

�

�

�

�

�

d �

�

a+

p

2

�

� +

�

b+ 1 �

q

2

�

�

��

u�

�

a+

p

2

�

%�

�

b+

q

2

�

%

�

= qd% (5)

where a and b are arbitrary constants. The other commutators can be obtained from (5)

by complex conjugation and applying the GHP [16] prime. Recalling that (p; q) becomes

(q; p) under conjugation and (p; q) becomes (�p;�q) under the prime, these identities

simplify our computations greatly.

2.1 The Perturbed Bianchi Identities With Gauge Invariant Fields

In Kerr background, the perturbed Bianchi identities are:

2

(u� %)	

4B

= (d

0

+ 4�)	

3B

� 3�

B

	

2

(6)

(u� 2%)	

3B

= (d

0

+ 3�)	

2B

+ (d

0

+ 3�)

B

	

2

(7)

(d � � )	

4B

= (u

0

+ 4�)	

3B

� 3�

B

	

2

(8)

(d � 2� )	

3B

= (u

0

+ 3�)	

2B

+ (u

0

+ 3�)

B

	

2

: (9)

1

Chandrasekhar [1], p324.

2

Refer to Penrose and Rindler [17], Eqs. (4.12.36){(4.12.39) and Eqs. (4.12.32).
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Only half of the Bianchi identities need be considered, since the others may be obtained

by applying the prime operator. The following perturbed Ricci identities will also be used:

(u

0

+ �+ �)�

B

� (d

0

+ � � �)�

B

= �	

4B

(10)

d�

B

� (d

0

+ �)

B

�� (d

0

+ �)�

B

= ���

B

� �

B

� + (%� %)�

B

�	

3B

(11)

(u

0

+ �)

B

� + (u

0

+ �)�

B

� u�

B

= ��

B

�� ��

B

� (� + �)�

B

�	

3B

(12)

To put the Bianchi identities into a form which, like the Maxwell equations, involves

only gauge invariant �eld quantities, we de�ne:

e

	

3B

:= (d

0

+ 4�)	

3B

� 3�

B

	

2

e

	

2B

:= (d

0

+ 5�)

h

(d

0

+ 3�)	

2B

+ (d

0

+ 3�)

B

	

2

i

� 2	

3B

(d

0

%)� 3	

2

(u�

B

): (13)

These are gauge invariant weighted quantities of (p; q) type (�3; 1) and (�2; 2), respec-

tively. Each �eld quantity has spin-weight �2. The correspondence between these �eld

quantities and the quantities used in the Schwarzschild case

3

are:

e

	

3B

 ! d

0

b

	

3B

e

	

2B

 ! d

0

d

0

b

	

2B

:

The origin of the quantities (13) is clear. Firstly,

e

	

3B

is de�ned as the right hand side of

the Bianchi identity (6). The �eld quantity

e

	

2B

is then found from (7), by operating with

(d

0

+ 5�) and using the complex conjugate of the commutator (5), with (p; q) = (�2; 0)

and (a; b) = (0; 3).

4

The left hand side becomes

(d

0

+ 5�)(u� 2%)	

3B

= (u� 3%)(d

0

+ 4�)	

3B

+ 2	

3B

(d

0

%)

= (u� 3%)(

e

	

3B

+ 3	

2

�

B

) + 2	

3B

(d

0

%):

Simplifying this, using equation (1), we get

(u� 3%)

e

	

3B

= (d

0

+ 5�)

h

(d

0

+ 3�)	

2B

+ (d

0

+ 3�)

B

	

2

i

� 2	

3B

(d

0

%) � 3	

2

(u�

B

)

and the right hand side de�nes

e

	

2B

. Thus, in particular, each of (13) is gauge invariant,

and this is discussed below.

Now the Bianchi identities may be expressed solely in terms of the gauge invariant

quantities (13):

(u� %)	

4B

=

e

	

3B

(14)

(u� 3%)

e

	

3B

=

e

	

2B

(15)

h

(d

0

+ 4� � � )(d � � ) + 3	

2

i

	

4B

= (u

0

+ 4� + �)

e

	

3B

(16)

(u

0

+ 4� + �)

e

	

2B

=

h

(d

0

+ 4� � 2� )(d � 2� ) + ((d

0

+ � )� � (u+ %)�)

i

e

	

3B

� (% � %)(u

0

+ 4�+ �)

e

	

3B

+ 3

h

(2% � %)	

2

� (d

0

%)(d � � )

i

	

4B

: (17)

3

See [3] Eq. (3.29).

4

That is, write down the conjugate of (5), noting that p ! q and q ! p. Then substitute the given

values of (p; q) into this new commutator. The same will apply below.
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To show that the identities (16) and (17) are identical with (8) and (9), respectively,

requires some work. For example, acting on (8) with (d

0

+ 4� � � ), using the primed

version of the commutator (5) ((p; q) = (�2; 0); (a; b) = (3; 0)) and the Ricci identity

(10) we have

(d

0

+ 4� � � )(d � � )	

4B

= (u

0

+ 4� + �)

�

(d

0

+ 4�)	

3B

� 3�

B

	

2

�

� 3	

2

	

4B

:

So (8) and (16) are identical. A similar calculation reveals that (8) and (17) are identical,

and the details are given in [11].

2.2 Proof Of Gauge Invariance

Since each of (13) can be related to the gauge invariant Newman-Penrose �eld 	

4B

in

the perturbed Bianchi identities above, it is evident that they are gauge invariant. Al-

ternatively, we may check that the �eld quantities are indeed gauge invariant in a brief

calculation. A combined in�nitesimal coordinate-gauge transformation and in�nitesimal

Lorentz transformation has the following e�ect (see Lun [4]):

	

4B

7�! 	

4B

	

3B

7�! 	

3B

+ 3v	

2

�

B

7�! �

B

+ (d

0

+ �)v: (18)

Thus

e

	

3B

:= (d

0

+ 4�)	

3B

� 3�

B

	

2

7�! (d

0

+ 4�)	

3B

+ 3	

2

(d

0

+ �)v � 3�

B

	

2

� 3	

2

(d

0

+ �)v =

e

	

3B

:

On the other hand, using equation (7),

e

	

2B

may be written

e

	

2B

= (d

0

+ 5�)(u� 2%)	

3B

� 2	

3B

(d

0

%)� 3	

2

(u�

B

);

and, under the gauge transformations,

e

	

2B

becomes

e

	

2B

7�!

e

	

2B

+ 3	

2

[(d

0

+ 2�)(u+ %)� u(d

0

+ �)� 2(d

0

%)]v:

The terms involving v on the right hand side vanish identically, using the complex conju-

gate of the commutator (5), with (p; q) = (�2; 0); (a; b) = (0; 0).

2.3 Wave-like Gravitational Perturbation Equations

The perturbed Bianchi identities (14){(17) then allow us to derive a system of wave-like

gravitational perturbation equations in the following way. Acting on (14) with (u

0

+4�+�)

and using (16) we have

h

(u

0

+ 4�+ �)(u� %)� (d

0

+ 4� � � )(d � � )� 3	

2

i

	

4B

= 0: (19)
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This is the usual spin-weight �2 Teukolsky equation.

Operating on (16) with (u� 2% � %) we get

(u� 2% � %)(u

0

+ 4�+ �)

e

	

3B

= (u� 2%� %)

h

(d

0

+ 4� � �)(d � � ) + 3	

2

i

	

4B

: (20)

Now, using the complex conjugate of (5) (with (p; q) = (�3;�1), (a; b) = (

3

2

;

5

2

)), and (5)

(with (p; q) = (�4; 0), (a; b) = (3; 0)), we derive the following commutator for weighted

quantities of (p; q) weight (�4; 0):

(u� 2% � %)(d

0

+ 4� � �)(d � � ) = (d

0

+ 5� � � )(d � � + �)(u� %)� 3(d

0

%)(d � � ):

Hence, using (1), equation (20) becomes

(u� 2% � %)(u

0

+ 4� + �)

e

	

3B

= (d

0

+ 5� � � )(d � � + �)(u� %)	

4B

+ 3	

2

(u+ %� %)	

4B

� 3(d

0

%)(d � � )	

4B

:

From (14) this may be rewritten as a wave-like perturbation equation for

e

	

3B

h

(u� 2% � %)(u

0

+ 4�+ �)� (d

0

+ 5� � � )(d � � + �)� 3	

2

i

e

	

3B

= 3

h

	

2

(2% � %)� (d

0

%)(d � � )

i

	

4B

: (21)

In a similar fashion, from (15) and (17) we derive the following perturbation equation

for

e

	

2B

:

h

(u� 3% � 2%)(u

0

+ 4� + �)� (d

0

+ 5� � 2� )(d � 2� + �) + ((u+ %)�� (d

0

+ � )� )

i

e

	

2B

= 6%	

2

(%� %)	

4B

+ 3%	

2

e

	

3B

� 4(d

0

%)(d � � + �)

e

	

3B

+ 2(� + �)(d

0

%)

e

	

3B

+

e

	

3B

(u� 2%)

h

(d

0

+ �)� � (u+ %)�

i

(22)

Using (1) and (4), the right hand side simpli�es to

6%	

2

(%� %)	

4B

� 2(d

0

%)(2d � 3� + �)

e

	

3B

+ 2

e

	

3B

h

(u� 2%)d

0

� � %(d + �)�

i

;

which collapses if � = 0, 	

2

= 	

2

(which implies % = %), and we recover precisely the

Schwarzschild result. Importantly, equations (21) and (22) are the Kerr analogues of the

spin-weight �1 and spin-weight 0 (Regge-Wheeler) equations for the perturbations of the

Schwarzschild space-time, respectively.

Equivalent forms of equation (21) are:

h

(u

0

+ 4�+ �)(u� 3%) � (d

0

+ 4� � 2� )(d � 2� ) + ((u+ %)�� (d

0

+ � )� )

i
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= 3

h

(2% � %)	

2

� (d

0
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4B

� (%� %)(u

0

+ 4� + �)

e

	

3B

(23)

or
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h

(u

0

+4�+�)(u� 2%� %)� (d

0

+4�� 2� )(d� 2� ) + 2	

2

�	

2

+2%�+3(d�)� (d

0

�)

i

e

	

3B

= 3

h

(2%� %)	

2

� (d

0

%)(d � � )

i

	

4B

: (24)

These can be derived from (15) and (17) or alternatively from (21), using the Newman-

Penrose commutators [u;u

0

] and [d; d

0

].

Furthermore, we may derive a higher-order decoupled equation governing

e

	

3B

from

equation (21), using the commutator (5), equations (1), (3), and the Bianchi identity (14).

The result is

(

(u� 6% � %)

�

(u� 4%� %)

h

(u� 2% � %)(u

0

+ 4�+ �)� (d

0

+ 5� � � )(d � � + �)� 3	

2

i

� 3

h

	

2

(2%� %)� (d

0

%)(d � � + �)

i

�

� 6%	

2

(%� %)

)

e

	

3B

= 0: (25)

Although it has not yet been found, we expect that a similar, although more complicated,

decoupled equation also exists for

e

	

2B

. We discuss the signi�cance of these higher-order

equations in the next section.

2.4 Transformations Between The Perturbation Equations

The Bianchi identities also provide natural transformation identities relating the perturba-

tion equations above. Firstly, we derive the following commutation relation for quantities

of (p; q) type (�4; 0)

(u� 2%� %)

h

(u

0

+ 4� + �)(u� %)� (d

0

+ 4� � � )(d � � )� 3	

2

i

=

h

(u� 2% � %)(u

0

+ 4� + �)� (d

0

+ 5� � �)(d � � + �)� 3	

2

i

(u� %)

�3

h

	

2

(2%� %)� (d

0

%)(d � � )

i

: (26)

from the complex conjugate of (5) (with (p; q) = (�3;�1); (a; b) = (

3

2

;

5

2

)) and (5) (with

(p; q) = (�4; 0); (a; b) = (3; 0)). Now, from (14) and (19), and using (26), we see that

0 = (u� 2% � %)

h

(u

0

+ 4�+ �)(u� %)� (d

0

+ 4� � � )(d � � )� 3	

2

i

	

4B
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h

(u� 2% � %)(u

0

+ 4� + �)� (d

0

+ 5� � �)(d � � + �)� 3	

2

i

e

	

3B

�3

h

	

2

(2%� %)� (d

0

%)(d � � )

i

	

4B

(27)

and thus we derive the perturbation equation for

e

	

3B

from (19) by di�erentiation.

The transformation from

e

	

3B

to

e

	

2B

follows along similar lines, but is more compli-

cated, so only the result is given here. Applying (u � 3% � 2%) to equation (23), using

equations (21), (1), (3), (14) and (5) to simplify the right hand side, as well as (5) repeat-

edly on the left hand side, and after some cancellation, we derive
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h

(u�3%�2%)(u

0

+4�+�)� (d

0

+5��2� )(d�2� +�)+((u+%)�� (d

0

+� )� )

i

(u�3%)

e

	

3B

= 3%	

2

e

	

3B

+ 6%	

2

(% � %)	

4B

�

e

	

3B

(u� 2%)

h

(u+ %)�� (d

0

+ � )�

i

+ 2(d

0

%)(� + �)

e

	

3B

� 4(d

0

%)(d � � + �)

e

	

3B

;

which becomes the equation (22) for

e

	

2B

, using (15). Thus we have derived equation (22)

from (23) by di�erentiation.

The transformation from 	

4B

to

e

	

2B

, which corresponds to the transformation from

the Bardeen-Press to the Regge-Wheeler equation in the Schwarzschild case, is achieved

by a combination of these transformations. That is

e

	

2B

= (u� 3%)(u� %)	

4B

: (28)

This transformation identity agrees with the results of Sasaki and Nakamura [9, 10] and

Chandrasekhar [1], in the sense described below. The essential feature of the transforma-

tion is that it consists of two u operators.

2.5 Coordinate Results

Transformations between the Teukolsky equation and a Regge-Wheeler-like gravitational

wave equation in the Kerr background have been investigated thoroughly from a coordi-

nate point of view. The motivation for this investigation is that the Teukolsky equation,

while being separable, has long-ranged terms in its e�ective potential. The analogous

question in the Schwarzschild case is the relationship between the Bardeen-Press and

Regge-Wheeler equations. Chandrasekhar [1] and Sasaki and Nakamura [9] derived trans-

formations in this case, and subsequently generalised their results to the Kerr background.

In [3] we showed how their coordinate results for the Schwarzschild space-time follow in a

gauge invariant and geometric manner from the perturbed Bianchi identities in the gauge

invariant approach to perturbations, and how they are a part of a much broader picture

of perturbations than �rst imagined.

In the present case, the Kerr analogue of the Regge-Wheeler equation, that is equation

(22), is not decoupled or separable. The transformation from the Teukolsky equation to

equation (22) is

e

	

2B

= (u� 3%)(u� %)	

4B

:

A natural question to ask is how this result relates to the work of Chandrasekhar [1]

and Sasaki and Nakamura [10] on the perturbations of the Kerr space-time. Below we

investigate how the essential structure of the transformation identity gives rise to a trans-

formation from the Teukolsky equation to a short-ranged separable Regge-Wheeler-like

wave equation, in agreement with the work of Sasaki and Nakamura [10].
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We adopt the null tetrad (see Chandrasekhar [1])

l

�

=

1

�

(r

2

+ a

2

;�; 0; a)

n

�

=

1

2(r

2

+ a

2

cos

2

#)

(r

2

+ a

2

;��; 0; a)

m

�

=

1

(r + ia cos #)

p

2

(ia sin#; 0; 1; i cosec#); (29)

with

� := r

2

� 2Mr + a

2

whereupon

	

2

= �

M

(r � ia cos#)

3

or

(r � ia cos#) =

�

�

M

	

2

�

1

3

:

In the absence of the rotation group SO(3) in the background, the complex curvature 	

2

canonically de�nes the coordinates r and # in this way. In the absence of curvature, while

both M and 	

2

vanish individually, their quotient is well behaved. Thus the coordinate

results below are also valid in the Schwarzschild and 
at space-time cases.

From equations (1) we have that

u(	

2

)

m

= 3%m(	

2

)

m

:

Therefore (28) can be written

e

	

2B

=

1

4

(	

2

)

2

3

uu

�

4(	

2

)

�

4

3

	

4B

(	

2

)

�

2

3

�

:

or

e

	

2B

=

1

4�

2

uu

�

4�

4

	

4B

�

2

�

(30)

where

� := r � ia cos#:

De�ne the new �eld quantity

R

�2

:= 4�

5

e

	

2B

: (31)

In the Schwarzschild limit, the radial part of this quantity corresponds to the Regge-

Wheeler �eld, satisfying the Regge-Wheeler wave equation in coordinates after expanding

in spin-weighted spherical harmonics.

The transformation identity (30) becomes

R

�2

= �

3

D

0

D

0

�

T

�2

�

2

�

(32)
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where

T

�2

= 4�

4

	

4B

(33)

is the usual Teukolsky quantity, and

D

0

:=

r

2

+ a

2

�

@

t

+ @

r

+

a

�

@

�

:

While T

�2

is separable in the sense described in Teukolsky [14] and Chandrasekhar [1],

R

�2

is not separable.

Introducing the slightly modi�ed quantity

R

�

�2

:= �

3

�

D

0

D

0

�

T

�2

�

2

�

�

(34)

where �

�

=

p

r

2

+ a

2

, we see that R

�

�2

is separable, and it coincides with (32) when a! 0.

In fact, in the Schwarzschild limit, (34) compares very favourably with our Schwarzschild

result [3] equation (3.85), and, as discussed at length in [3], agrees with the transformation

provided by Sasaki and Nakamura [10] and Chandrasekhar [1]. Now, the relation (34)

is precisely the one which Sasaki and Nakamura found from another point of view (see

Sasaki and Nakamura [10] equation (2.13), with f = g = h = 1). As shown by Sasaki and

Nakamura, the quantity R

�

�2

satis�es a (homogeneous) Regge-Wheeler-like di�erential

equation (with short-ranged e�ective potential) in the Kerr case, after separating the

variables in the usual way. Now, if it were possible to reconstruct 	

4B

from R

�

�2

, we

would have a complete determination of our gauge invariant �eld quantities in terms of

R

�

�2

. In this case, solving the Regge-Wheeler-like equation determines all of the natural

gauge invariant �eld quantities.

The analysis presented here can be applied in the case of the electromagnetic pertur-

bations of the Kerr space-time as well, and the results are presented elsewhere [11]. It is

in this sense that the Fackerell-Ipser [18] equation for the electromagnetic perturbations

can be made separable. The resulting equation reduces to the Regge-Wheeler equation

for electromagnetic perturbations in the Schwarzschild case.

3. Reissner-Nordstr�om Space-time

Our attention now turns to the Reissner-Nordstr�om space-time. Using the null tetrad:

l

�

=

1

�

(r

2

;�; 0; 0)

n

�

=

1

2r

2

(r

2

;��; 0; 0)

m

�

=

1

r

p

2

(0; 0; 1; i cosec #) (35)

where � = r

2

� 2Mr +Q

2

, we have

� = � = � = � = " = � = � = �

0

= �

2

= 	

0

= 	

1

= 	

3

= 	

4

= 0
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u% = %

2

; u

0

% = �%� �	

2

; u� = %�+	

2

; u

0

� = ��

2

u	

2

= (3	

2

+ 2�

11

)%; u

0

	

2

= �(3	

2

+ 2�

11

)�; u�

1

= 2%�

1

; u

0

�

1

= �2��

1

d	

2

= d�

1

= d� = d% = d

0

	

2

= d

0

�

1

= d

0

� = d

0

% = 0 (36)

and

% = % = �

1

r

; � = � = �

�

2r

3

; � = �� = �

cot#

2r

p

2

;


 =

(Mr �Q

2

)

2r

3

; 	

2

= �

Mr �Q

2

r

4

; �

1

=

Q

2r

2

; �

11

= 2�

1

2

: (37)

Thus,

r =

�

Q

2�

1

�

1

2

ur = �%r; u

0

r = �r; dr = 0: (38)

In this article, we use the convention �

mn

= 2�

m

�

n

.

In Reissner-Nordstr�om background, the perturbed Maxwell equations take the form:

5

d

0

�

1B

+ (d

0

+ 2�)

B

�

1

= (u� %)�

2B

(39)

(u

0

+ 2�)�

1B

+ (u

0

+ 2�)

B

�

1

= d�

2B

(40)

d�

1B

+ (d � 2� )

B

�

1

= (u

0

+ �)�

0B

(41)

(u� 2%)�

1B

+ (u� 2%)

B

�

1

= d

0

�

0B

: (42)

We will use the following two perturbed Bianchi identities:

(u

0

+ 3�)	

2B

+ (u

0

+ 3�)

B

	

2

= d	

3B

+ 2�

1

d�

2B

� 4��

1

(�

1B

+ �

1B

)� 2�

B

�

11

(43)

(u� 2%)	

3B

= d

0

	

2B

+ (d

0

+ 3�)

B

	

2

+ 2�

1

u�

2B

+ 4��

1

�

0B

� 2�

B

�

11

(44)

and the Ricci identity:

u�

B

+ u

B

� � d�

B

= %

B

� + %�

B

+	

2B

: (45)

Unlike in the vacuum cases, both electromagnetic and gravitational quantities appear in

the Maxwell equations and in the Bianchi identities. Using the derivatives of �

1

and 	

2

from (36), and since % = %, � = � in this case, the perturbed commutators

�

[d; d

0

]�

1

�

B

and

�

[d; d

0

]	

2

�

B

can be rewritten

h

dd

0

B

� d

0

d

B

i

�

1

= 2�

1

h

%(�

B

� �

B

)� �(%

B

� %

B

)

i

(46)

h

dd

0

B

� d

0

d

B

i

	

2

= (3	

2

+ 2�

11

)

h

%(�

B

� �

B

)� �(%

B

� %

B

)

i

: (47)

5

Chandrasekhar [1], Chapter 1, equations (330){(333).
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3.1 Gauge Invariant Perturbation Equations

From the Maxwell equation (40), and its complex conjugate, we have

(u

0

+ 2�)(�

1B

� �

1B

) + 2�

1

(�

B

� �

B

) = d�

2B

� d

0

�

2B

(48)

since �

1

= �

1

and u

0

B

= u

0

B

. Operating on this with (u � 2%) and using the Newman-

Penrose commutator [u; d] in conjunction with equations (36), we see that

(u� 2%)(u

0

+ 2�)(�

1B

� �

1B

) + 2�

1

u(�

B

� �

B

) = d(u� %)�

2B

� d

0

(u� %)�

2B

: (49)

From equation (39) and its complex conjugate, and using [d; d

0

], the right hand side of

equation (49) may be expanded to

dd

0

(�

1B

� �

1B

) + 2�

1

(d�

B

� d

0

�

B

) + (dd

0

B

� d

0

d

B

)�

1

:

Thus, equation (49) may be written

h

(u�2%)(u

0

+2�)�dd

0

i

(�

1B

��

1B

) = �2�

1

h

u(�

B

��

B

)�(d�

B

�d

0

�

B

)

i

+(dd

0

B

�d

0

d

B

)�

1

:

(50)

Now, from the Ricci identity (45) and its complex conjugate,

u(�

B

� �

B

)� d�

B

+ d

0

�

B

= ��(%

B

� %

B

) + %(�

B

� �

B

) + (	

2B

�	

2B

): (51)

Substituting (46) and (51) into the right hand side of (50), we derive the following per-

turbation equation for �

1B

� �

1B

h

(u� 2%)(u

0

+ 2�) � dd

0

i

(�

1B

� �

1B

) = �2�

1

(	

2B

�	

2B

): (52)

When �

1

= 0, we recover precisely the Regge-Wheeler equation for electromagnetic �elds

in the Schwarzschild background.

In a similar calculation, starting from the perturbed Bianchi identities and using the

perturbed Maxwell equations, we may derive the following wave-type equation for the

gravitational �eld.

h

(u� 3%)(u

0

+ 3�) � dd

0

+ 3	

2

+ 2�

11

)

i

(	

2B

�	

2B

)

= 4�

1

h

dd

0

+ %u

0

� �u+ 4%�

i

(�

1B

� �

1B

): (53)

Equations (52) and (53) may be derived in the context of extending the gauge invariant

formalism, presented in the previous section, to the Reissner-Nordstr�om case (Fernandes

[19], Fernandes and Lun [13]), as well as in the naive fashion presented above from the

Newman-Penrose equations.

Importantly, the perturbed �eld quantities Im(	

2B

) and Im(�

1B

) are invariant under

in�nitesimal coordinate transformations and in�nitesimal Lorentz transformations. The

proof of this statement requires a brief calculation, but follows directly from Lun [4].

Alternatively, since 	

2

= 	

2

and �

1

= �

1

then the Lie derivatives of Im(	

2

) and Im(�

1

)
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vanish. So Im(	

2B

) and Im(�

1B

) are coordinate-gauge invariant, and they are also

una�ected by in�nitesimal tetrad transformations.

In addition, when �

1

= 0 (or Q = 0) we recover precisely the Regge-Wheeler equations

for the electromagnetic and gravitational perturbations of the Schwarzschild space-time.

Thus, equations (52) and (53) are the generalisation of Price's [20] result for the pertur-

bations of the Schwarzschild space-time to the case of the Reissner-Nordstr�om black hole.

These equations may be decoupled, providing a pair of Regge-Wheeler-type equations for

the gauge invariant perturbations of Reissner-Nordstr�om space-time. In coordinates, for

an l-pole, we have
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(54)

where
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2

!

:

In fact this is an alternative derivation, from the point of view of the modi�ed Newman-

Penrose formalism, of Moncrief's [15] equations, which he derived for the \odd-parity"

perturbations of the Reissner-Nordstr�om space-time using the Hamiltonian formulation.

A detailed derivation of this result is given elsewhere [12].

Finally, a decoupled higher-order equation governing the electromagnetic perturba-

tions can be obtained directly from equation (52). Applying the operator

h

(u� 5%)(u

0

+ 5�) � dd

0

+ 3	

2

+ 2�

11

i

to equation (52) and rewriting the right hand side according to (53), we derive the fol-

lowing fourth-order (gauge invariant) equation for (�

1B

� �

1B

):
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(55)

or, expanding in coordinates for an l-pole
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): (56)
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This equation is fourth-order in derivatives of time, and hence may include solutions

which are unphysical. However, since we are not required to take the square root of

angular derivatives, as occurs in the decoupling of equations (52) and (53), there are some

advantages in investigating higher-order equations such as equations (56). In particular

this will be signi�cant when the background geometry does not give rise to separable wave

equations, as is the case in the Kerr space-time (c.f. equation (25)). A similar fourth-

order equation may exist for the gravitational perturbations, although this has not yet

been found.

4. Discussion

The perturbations of the Kerr and Reissner-Nordstr�om space-times can be investigated

using a generalization of the gauge invariant approach developed for the Schwarzschild

case. In the present article we have presented some of the results of this analysis.

In the Kerr space-time the extension of the techniques used in the Schwarzschild case

is purely technical. The perturbed Bianchi identities are rewritten in a form involving

only certain natural gauge invariant perturbed �eld quantities. We then derive a system

of gauge invariant perturbation equations from the perturbed Bianchi identities, as well

transformations which link each perturbation equation to each other. These results can

be seen to agree with the transformations derived by Sasaki and Nakamura [9, 10] and

Chandrasekhar [1], between the Teukolsky equation and a Regge-Wheeler-like equation.

The essential feature of this transformation is that it consists of a pair of radial di�erential

operators, after specifying the time and angular dependence.

As stated above, the success of the gauge invariant technique is due to the geometry of

the background space-time. Importantly, much of the structure of the perturbed Bianchi

identities in the Schwarzschild background is also present in the Kerr case. The only

added complication is due to the presence of angular momentum.

With angular momentum present, the background is not spherically symmetric, and

we are not able to expand the perturbed �elds in harmonics in general. Consequently

our gauge invariant �eld quantities each have spin-weight �2. Furthermore, the (second-

order wave-like) gravitational perturbation equations are not decoupled, except for the

well known Teukolsky equation. In addition, whereas 	

4B

can be made separable in the

usual sense by multiplication by (r � ia cos#)

4

(see Teukolsky [14], Chandrasekhar [1]),

the same is not true for

e

	

3B

or

e

	

2B

. This can be seen clearly, for example, when

e

	

2B

is written in terms of 	

4B

in equation (32), and the issue has been addressed by Sasaki

and Nakamura [9, 10] and Chandrasekhar [1], as well as in the text above. Nevertheless,

each equation reduces to its correct Schwarzschild form when � = 0; 	

2

= 	

2

(which

corresponds to a = 0).

Given the success of the gauge invariant technique in treating the perturbations of

the Schwarzschild and Kerr space-times, our attention turns to the electrovac cases. The

presence of charge in the background complicates the perturbation problem greatly. This

can be seen in the complex nature of the Maxwell equations (39){(42) and the Bianchi
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identities (43) and (44) in Reissner-Nordstr�om background, where gravitational and elec-

tromagnetic �eld quantities mix (seemingly) freely. The background charge leads to the

nontrivial coupling between the gravitational and electromagnetic �elds. This coupling

arises in the �rst instance in the perturbed Maxwell equations, through directional deriva-

tives of the Coulomb �eld along the perturbed tetrad directions, and in the perturbed

Bianchi identities, through the Newman-Penrose components of the Ricci tensor. We no-

tice also that the perturbed Bianchi identities involve the complex conjugate of quantities

of opposite spin-weight, in contrast to the Bianchi identities in the vacuum backgrounds.

So the structure of the Newman-Penrose equations changes.

However, the techniques presented for the vacuum cases do generalise to the electrovac

space-times. Above we have shown how gauge invariant decoupled perturbation equations

arise from the perturbed Newman-Penrose equations. These results can be achieved in

the context of the gauge invariant formalism as well as in the fashion described in this

article. The equations are a generalisation of Price's [20] result for the perturbations of

the Schwarzschild space-time, and also provide an alternative derivation, from the point of

view of the modi�ed Newman-Penrose formalism, of Moncrief's [15] equation for the \odd-

parity" perturbations of the Reissner-Nordstr�om black hole. These results are a precursor

to extending the gauge invariant techniques to the Reissner-Nordstr�om space-time.

In the full gauge invariant treatment of the perturbations of the Reissner-Nordstr�om

space-time (see [13], [19]), we have been able to identify the natural gauge invariant elec-

tromagnetic and gravitational �eld quantities. When they are rewritten in a form involv-

ing only these quantities, the integrability conditions for the perturbed Maxwell equations

and Bianchi identities provide a rather complicated system of coupled perturbation equa-

tions. A decoupling of these equations will follow from a detailed consideration of the role

of charge in the background space-time. It is expected that the equations will simplify

greatly when appropriate combinations of the �eld quantities are taken, and these may

involve mixing �eld quantities of opposite spin-weight, as occurs in the Bianchi identities

in this case. The results in the Reissner-Nordstr�om case throw some light on the compli-

cated nature of the coupling of the electromagnetic and gravitational �elds, without the

added complexity of angular momentum in the background space-time.

Our ultimate objective is to extend our gauge invariant approach to the perturba-

tions of the Kerr-Newman space-time. Although the perturbations of the Kerr-Newman

space-time have de�ed many attempts at clari�cation previously, our preliminary results

indicate that the gauge invariant technique may be applied in that case as well. The main

problem to be addressed is the combined e�ect of angular momentum and charge in the

background. It is hoped that the present work will lead to a deeper understanding of

the role played by angular momentum in the perturbations of vacuum space-times, and

charge in the spherically symmetric case, and will thus enable us to extend our approach

to the perturbations of the Kerr-Newman space-time.
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