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Abstract

We consider dilaton{axion gravity interacting with p U(1) vectors (p = 6 cor-

responding to N = 4 supergravity) in a four{dimensional spacetime admitting a

non{null Killing vector �eld. It is argued that this theory exhibits features of a

\square" of vacuum General Relativity. In the three{dimensional formulation it

is equivalent to a gravity coupled �{model with the (4 + 2p){dimensional target

space SO(2; 2+ p)=(SO(2)� SO(2+ p)). K�ahler coordinates are introduced on the

target manifold generalising the Ernst potentials of General Relativity. The cor-

responding K�ahler potential is found to be equal to the logarithm of the product

of the four{dimensional metric component g

00

in the Einstein frame and the dila-

ton factor, independently of the presence of vector �elds. The K�ahler potential is

invariant under exchange of the Ernst potential and the complex axidilaton �eld,

while it undergoes holomorphic/antiholomorphic transformations under general tar-

get space isometries. The \square" property is also manifest in the two{dimensional

reduction of the theory as a matrix generalisation of the Kramer{Neugebauer map.

Supergravity is often called a \square root" of General Relativity. Indeed, a super-

symmetric extension of the Poincar�e algebra is reminiscent of the Dirac's procedure of

obtaining a spin 1/2 wave equation from the scalar wave equation. A bosonic sector of

extended supergravities, apart from the graviton, contains scalar and vector �elds. One of

the most interesting bosonic structures is suggested by the N = 4 supergravity, which at-

tracted much attention recently in connection with \stringy" black holes [1, 2, 3, 4]. Here

we want to discuss the relationship between this theory (often called also dilaton{axion

gravity) and vacuum General Relativity and to show that, in a certain sense, it can be

viewed as a \square" of the latter.

As far as stationary solutions such as black holes are concerned, (or more generally,

space{times possessing a non{null Killing vector �eld), Einstein's theory may be refor-

mulated as a three{dimensional gravity coupled non{linear �{model [5]. This theory

admits a concise representation in terms of the Ernst potential � [6, 7], which may be

regarded as a complex coordinate on a one{dimensional K�ahler manifold SU(1; 1)=U(1).

A similar representation holds for the dilaton{axion �{model. The K�ahler potential for

the target space of the three{dimensional N = 4 supergravity turns out to be equal to

the logarithm of the product of potentials of the vacuum gravity and the dilaton{axion

system independently of the presence of vector �elds. For vacuum gravity this potential
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is simply given by the logarithm of the four{dimensional g

00

. A dilaton exponential plays

a similar role in the dilaton{axion �{model possessing the same SU(1; 1)=U(1) struc-

ture. A square of this coset generates the target space of the pure dilaton{axion gravity,

which is enlarged to the manifold SO(2; 2 + p)=(SO(2) � SO(2; p)) when vector �elds

are included. However, the K�ahler potential still preserves its value given by the pure

dilaton{axion gravity. This gives rise to various similarities between classical solutions of

the Einstein{Maxwell{dilaton{axion theory and vacuum Einstein equations. One can say

that N = 4 supergravity exhibits at the same time features of the square root and the

square of General Relativity. Apart from this somewhat philosophical implication, the

K�ahler representation of the stationary N = 4 supergravity turns out to be very useful in

identifying hidden symmetries and generating classical solutions.

Let us recall �rst the Ernst formulation of the stationary vacuum Einstein equations

[6]. Assuming the spacetime to admit a timelike (in an essential region) Killing vector

�eld, one parameterises the four{dimensional metric through the standard Kaluza{Klein

ansatz

ds

2

= g

��

dx

�

dx

�

= f(dt� !

i

dx

i

)

2

�

1

f

h

ij

dx

i

dx

j

; (1)

where the three{space metric, h

ij

; (i; j = 1; 2; 3), the rotation one{form, !

i

and the

three{dimensional conformal factor, f , depend on the three{space coordinates x

i

only. It

can then be shown that the vanishing of the mixed components of the Ricci tensor R

i

0

implies the existence of the NUT{potential � replacing a rotation one{form ! = !

i

dx

i

via dualisation [8]

d� = �f

2

� d!; (2)

where an asterisk stands for the three{dimensional Hodge dual. Together f and � pa-

rameterise a two{dimensional target manifold of the �{model resulting from dimensional

reduction. A K�ahler representation is achieved by introducing the following linear com-

bination, the (vacuum) Ernst potential,

� = if � �: (3)

(The more frequently used potential di�ers from this one by a factor i.) The corresponding

equations of motion de�ne a harmonic map from the three{dimensional space x

i

to the

target manifold endowed with the metric

dl

2

= 2G

���

d�d�� = �2

d�d��

(��� �)

2

: (4)

The K�ahler metric G

���

is generated by the K�ahler potential K

G

���

= @

�

@

��

K(�; ��); (5)

for which one obtains the following simple expression

K = � lnV; V = Im� = f: (6)



SQUARE OF GENERAL RELATIVITY 107

Thus the K�ahler potential for any stationary solution of the vacuum Einstein equation is

directly related to the g

00

component of the four{dimensional metric.

The Ernst potential acts as a source in the three{dimensional Einstein equations for

the metric h

ij

R

ij

=

1

2

�

(i

��

j)

(Im�)

�2

: (7)

Once a solution is found, to restore a four{dimensional metric one has merely to solve

a linear equation (2) for the rotation one{form !. To solve three{dimensional gravity

coupled �{model equations additional assumptions are needed in general, such as existence

of the second space{time Killing �eld commuting with the �rst one. In this case, a further

reduction to two dimensions leads to completely integrable (modi�ed) chiral equations

with associated in�nite symmetries [9]. Another useful technique consists of restricting

the functional dependence of all target variables on space coordinates through a unique

scalar function (or several such functions) [10]. However, information already contained

in the structure of the target manifold may be helpful in generating new solutions from

already known ones. This amounts to using the target space isometries to relate between

themselves physically inequivalent �eld con�gurations. It is then important to �nd a

concise representation of symmetry transformations in terms of physical quantities. In

General Relativity it was precisely the Ernst formulation which allowed for considerable

simpli�cations. It is natural therefore to look for similar representation in more general

supergravity inspired bosonic theories.

The isometry group of the target manifold is a global symmetry of the system, which

maps one classical solution to another. For the vacuum Einstein system (4) it can be

written in the SL(2; R) form

�!

a�+ b

c�+ d

; ad� bc = 1; (8)

with real a; b; c; d. This three{parametric group can be conveniently cast into three one{

parameter subgroups. The �rst subgroup is the shift of the complex Ernst potential by a

real constant

i) �! �+ b; (a = d = 1; c = 0): (9)

This changes the NUT potential by a constant, which in view of (2) does not modify the

metric. This transformation is thus a pure gauge.

The second subgroup is the rescaling of the Ernst potential

ii) �! a

2

�; (b = c = 0; d = 1=a): (10)

This preserves the r.h.s. of the three{dimensional Einstein equations (7), but modi�es the

four{dimensional metric (1), thus producing physically inequivalent �eld con�gurations (in

particular, transforming asymptotically 
at solutions into asymptotically non{
at ones).

To write down the third subgroup one has �rst to make a discrete transformation: an

inversion of the Ernst potential �! �

�1

(which corresponds to a = d = 0; b = �c = 1 in

(8) plus change of a sign). After that one also makes a shift by a real constant:

iii) �

�1

! �

�1

+ c; (d = a = 1; b = 0): (11)
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This is the Ehlers transformation [11], an essential part of the whole group. It is non{

linear being expressed in terms of �, and physically corresponds to mixing of a mass and

a NUT charge (a gravitational analogue of electric{magnetic duality).

The remarkable property of this �{model is that the target manifold is a symmetric

Riemannian space. This property opens up prospects of obtaining an in�nite{dimensional

symmetry (Geroch group) [9] if one further assumes the existence of the second space{

time isometry commuting with the �rst one (stationary axisymmetric �elds, plane waves,

non{homogeneous cosmologies etc.). The corresponding symmetry group will be then an

a�ne extension of SL(2; R). Some of its lower{level elements were obtained in various

explicit forms as B�acklund transformations [12], and were used to generate new exact

solutions of Einstein equations. It is worth noting that the most sophisticated known

exact solutions belong to this type.

Obviously, the hidden symmetry of the stationary vacuum Einstein equations is iden-

tical to the S{duality [13] of the dilaton{axion system (also SL(2; R) � SU(1; 1)), which

is a part of the bosonic sector of N = 4; D = 4 supergravity. Let us consider �rst the pure

dilaton{axion system coupled to gravity. (Previous discussion of this model can be found

in [14, 15].) Denoting the four{dimensional Peccei{Quinn axion as � and introducing a

complex axidilaton �eld,

z = �+ ie

�2�

; (12)

one can write the action as follows

S =

Z

�

�R + 2

�

�

�@z(z � �z)

�1

�

�

�

2

�

p

�gd

4

x: (13)

Clearly the axion{dilaton term has exactly the same symmetries (8) with � replaced by z.

The role of the gauge transformation now is played by the shift of the axion by a constant,

while the inversion is related to the strong{weak coupling duality transformation.

These symmetries survive upon reduction to three dimensions. If the condition of

stationarity (1) is imposed, the target manifold of the resulting three{dimensional �{

model will be the product of two copies of SU(1; 1)=U(1), one in terms of the Ernst

potential, and another in terms of z:

dl

2

= 2G

�

�

�

dz

�

d�z

�

= �2

(

d�d��

(��� �)

2

+

dzd�z

(�z � z)

2

)

: (14)

Now the K�ahler metric G

�

�

�

; (�; � = 0; 1) is generated by the potential

G

�

�

�

= @

�

@

�

�

K(z

�

; �z

�

); z

�

= (�; z); (15)

K = � lnV; V = Im� Imz = fe

�2�

: (16)

The V {potential is given by the product of four{dimensional g

00

and the dilaton factor,

which plays similar role in the target space geometry. We observe therefore that the

stationary dilaton{axion gravity has the remarkable property of a \square" of vacuum

gravity. The reason for this is simply that the three{dimensional reductions of both the
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vacuum Einstein gravity and the dilaton{axion system have identical �{model representa-

tions. The coupled system also possesses the \Ernst{axidilaton" duality symmetry under

an exchange

�$ z: (17)

The situation becomes slightly more complicated when vector �elds are included. In

three dimensions vector �elds can be traded for scalars, and one can expect to get a

larger sigma{model with a higher{dimensional target manifold [16]. This is indeed the

case, e.g., for the Einstein{Maxwell theory [5, 17] (bosonic sector of N = 2 supergravity),

where one obtains a K�ahler target manifold SU(2; 1)=(SU(1; 1)�U(1)), as well as for other

supergravities and dimensionally reduced Kaluza{Klein theories [16]. We will discuss now

the N = 4 supergravity containing a dilaton, an axion, and six abelian vector �elds (for

the sake of generality we take p vector �elds). It turns out that the target manifold is

also K�ahler, and the corresponding complex coordinates are some generalisations of the

Ernst potentials of the Einstein{Maxwell theory. For the model with only one vector �eld

such coordinates were recently found [18, 19] to provide a convenient parameterisation

for the Ehlers{Harrison transformations of the theory, which had been discovered earlier

[3] in terms of real variables. When several vector �elds are present, the target space is

extended rather straightforwardly.

Consider a four{dimensional action

S =

Z

�

�R + 2

�

�

�@z(z � �z)

�1

�

�

�

2

+

�

izF

n

��

F

n��

+ c:c

�

�

p

�gd

4

x; (18)

where F

n

= (F

n

+ i

~

F

n

)=2;

~

F

n��

=

1

2

E

����

F

n

��

; n = 1; :::; p, and the sum over repeated

n is understood. For p = 6 this is the bosonic sector of N = 4;D = 4 supergravity.

This action is invariant under SO(p) rotations of vector �elds, which is an analogue of

T{duality of dimensionally reduced theories [20]. The equations of motion and Bianchi

identities (but not the action) are also invariant under S{duality transformations

z !

az + b

cz + d

; ad� bc = 1;

F

n

! (c� + d)F

n

+ ce

�2�

~

F

n

: (19)

Imposing the stationarity condition (1) one can express vector �elds through the elec-

tric v

n

and magnetic u

n

scalar potentials as follows

F

n

i0

=

1

p

2

@

i

v

n

; (20)

2Im

�

zF

nij

�

=

f

p

2h

�

ijk

@

k

u

n

: (21)

In three dimensions the rotation one form !

i

plays the role of a graviphoton, and one can

show using the standard argument that the \T{duality" group is enlarged to SO(1; p +

1). Also, S{duality becomes the symmetry of the three{dimensional action. Moreover,
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both these groups turn out to be uni�ed in a larger \U{duality" group SO(2; p + 2)

[3, 19, 21]. This can be easily checked by computing the K�ahler metric of the resulting

target manifold. To �nd the �{model representation one has to introduce a NUT potential

� via

d� = u

n

dv

n

� v

n

du

n

� f

2

� d!; (22)

and to derive the set of equations for �; u

n

in addition to the equations for f; �; �; v

n

.

The full set of equations will be that of the three{dimensional gravity coupled �{model

possessing the 4 + 2p dimensional target space SO(2; 2 + p)= (SO(2) � SO(p; 2)). One

can parameterise the target manifold by complex coordinates z

�

; � = 0; 1; :::; p+1 which

have the following meaning. The components � = n = 1; :::; p are complex potentials for

vector �elds

z

n

= u

n

� zv

n

� �

n

; n = 1; :::; p; (23)

while the � = p + 1 component is the complex axidilaton �eld itself, z

p+1

= z, and

z

0

= �+ v

n

�

n

� E; (24)

is the N = 4 analogue of the Ernst potential. Somewhat surprisingly, the K�ahler poten-

tial, generating the target space metric via (15), remains untouched by the electric and

magnetic potentials and preserves its value (16) given by pure dilaton{axion gravity:

K = � lnV; V = ImE Imz + (Im�

n

)

2

= fe

�2�

: (25)

Hence, in a sense, the \square" property of the pure dilaton{axion gravity is not destroyed

by vectors. At the same time, being expressed through complex coordinates, the K�ahler

potential has a non{trivial dependence on all of them, so that the metric of the target

space is non{degenerate.

Since the K�ahler metric (5) is given by mixed derivatives of holomorphic and anti-

holomorphic coordinates, a multiplication of V by an arbitrary holomorphic function and

its complex conjugate (to preserve reality of V ) does not change the metric. Thus a

transformation

V (z; �z)! f(z)

�

f(�z)V (z; �z) (26)

is a target space isometry. The Ernst{axidilaton duality (17) (with �

n

unchanged) belongs

trivially to this class. Another useful discrete symmetry corresponds to

f(z) =

�

Ez +�

2

�

�1

; �

2

� �

n 2

; (27)

and consists of the following:

E !

z

Ez +�

2

; z !

E

Ez +�

2

; �!

�

Ez +�

2

: (28)

Three{dimensional U{duality transformations SO(2; 2+p) of N = 4 supergravity can now

be listed in the following way. The most obvious symmetries include p(p � 1)=2 SO(p)
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rotations acting only on vector �elds, �! 
�, where 


T


 = I

p

, as well as 2p+1 gauge

transformations

gravitational : E ! E + g; �; z unchanged; (29)

magnetic : �! �+m; E; z unchanged; (30)

electric : �! � + ez; E ! E � 2e� � e

2

z; z unchanged; (31)

and scale

E ! e

2s

E; �! e

s

�; z unchanged: (32)

Here g; s;m; e are real scalar and vector group parameters. The remaining elements of the

symmetry group include 2p+1 Harrison{Ehlers transformations, which can be obtained by

applying the above discrete maps to (29{32). Namely, applying (17) to the electric gauge

(31), one gets an electric Harrison transformation (the corresponding set of parameters

will be denoted as h

e

). Acting by (28) on the magnetic gauge (30) and gravitational

gauge (29) one obtains a magnetic Harrison (h

m

) and Ehlers (c

E

) transformations. The

full group is closed by the SL(2; R) S{duality (19) expressed in terms of the target space

variables. This three{parametric set can be obtained by applying (17) to gravitational

gauge (29), scale (32) and Ehlers transformation.

In the particular case p = 1, due to the local isomorphism SO(2; 3) � Sp(4; R), there

exists a simple matrix generalisation of the Ernst potential [18]. Let us form the (2 � 2)

symmetric complex matrix collecting K�ahler coordinates in the following way

E =

 

E �

� �z

!

: (33)

One can easily check that the target space metric is reproduced via

dl

2

= �2Tr

�

dE

�

�

E � E

�

�1

d

�

E

�

�

E � E

�

�1

�

; (34)

which is a direct matrix analogue of (4). Also, the three{dimensional Einstein equations

take a form similar to (7):

R

ij

= �2Tr

�

�

�

E � E

�

�1

�

@

(i

E

� �

�

E � E

�

�1

@

j)

�

E

�

: (35)

The analogy to vacuum General Relativity is suggestive of expressing U{duality trans-

formations in a way similar to (9) { (11) with matrix valued parameters. The gauge

transformation (9) now is uplifted to

E ! E +B; (36)

where B is the real matrix of parameters

B =

 

g m

m b

!

: (37)
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This matrix{valued gauge transformation joins a gravitational gauge (g), magnetic gauge

(m) and an axion shift (b) belonging to S{duality (cf. (9)).

The scale transformation (10) now is split into a symmetry{preserving matrix relation:

E ! A

T

EA: (38)

Apart from the genuine SL(2; R) scale (a), it includes gravitational scale (s), electric

gauge (e) and electric Harrison (h

e

) transformations:

A =

 

e

s

h

e

�e a

!

: (39)

The last subgroup is the linear shift of an inverted matrix

E

�1

! E

�1

+ C; (40)

where C is a real symmetric matrix of parameters

C =

 

c

E

h

m

h

m

c

!

; (41)

combining c{transformation of S{duality with magnetic Harrison (h

m

) and Ehlers (c

E

)

transformations. For pure dilaton{axion gravity without vector �elds the matricesB;A;C

become diagonal and correspond to the product of two SL(2; R) factors. Dilaton{axion

gravity with one vector �eld generates Sp(4; R) symmetry, as was �rst found in [22]. Now

to make contact with the Sp(4; R) group, one has merely to decompose the matrix Ernst

potential into two symmetric real matrices [18]

E = Q+ iP; (42)

and then construct a 4� 4 real matrix

M =

 

P

�1

P

�1

Q

QP

�1

P +QP

�1

Q

!

: (43)

This is a symmetric symplectic matrix satisfying

M

T

JM = J; J =

 

O I

2

�I

2

O

!

: (44)

In terms ofM the metric of the target space reads

dl

2

= �

1

4

TrfdMdM

�1

g; (45)

while the Einstein equations for h

ij

are

R

ij

= �

1

4

Trf

�

@

(i

M

�

@

j)

M

�1

g: (46)
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A similar decomposition of U{duality can be constructed for arbitrary p, but the

associated matrix structures are more involved, so we will not pursue this here. Rather,

let us consider one other manifestation of the \square" property of dilaton{axion gravity

related to further dimensional reduction. If, in addition to stationarity, an assumption of

axial symmetry is made (more generally, that of existence of two commuting spacetime

Killing vectors), the rotation one form in (1) will have its only non{zero component !

'

= !

corresponding to rotation along the symmetry axis, while the three{metric can be written

in the Lewis{Papapetrou gauge

h

ij

dx

i

dx

j

= e

2


(d�

2

+ dz

2

) + �

2

d'

2

: (47)

Then 
 disappears from the dynamical equations for the �{model variables which now

take the form of a modi�ed chiral matrix

�

�M

;�

M

�1

�

;�

+

�

�M

;z

M

�1

�

;z

= 0: (48)

This can serve as a standard input for an application of of integrable systems techniques

[9, 12]. A Lax representation can be written straightforwardly in terms of M. Vacuum

Einstein theory is a particular case of this system with � = � = v = u = 0. In that case

there exists an alternative chiral equation involving another matrix F which is expressed

directly through f and !. Since ! and the NUT potential are related non{locally via

(2), M and F representations are essentially di�erent. Meanwhile a point{like relation

between two pairs f; � and f; ! exists, known as the Kramer{Neugebauer (KN) map,

which transformsM{equations into F{equations and vice{versa. This map is particularly

helpful in obtaining the elements of the Geroch group explicitly. The F{representation

for dilaton{axion gravity was found in [23]:

F =

 

P �P


�
P 
P
� �

2

P

�1

!

: (49)

Here 
 is a real symmetric matrix


 =

 

! �q

�q qv � �

!

; q = a+ v!; (50)

a = A

'

is the spatial component of the vector potential, and � = B

0'

is the component

of the Kalb{Ramond �eld (which was at the origin of �). The matrix 
 generalises the !

of General Relativity, P replaces the scalar f , while the quantity Q which enters (43) is

a matrix analogue of (minus) �. Similarly to the two{dimensional reduction of (2), there

exists a non{local relation between Q and 
 :

rQ = ��

�1

P

�

~

r


�

P; (51)

where r = (@

�

; @

z

) and

~

r = (@

z

;�@

�

) are two{dimensional Hodge dual operators. Now,

the local map betweenM and F is realised by

Q! i
; P ! �P

�1

: (52)
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To see this it is su�cient to write down equations for the (P, Q) and (P, 
) pairs

following from equations (48) for M and F [23]. The relation (52) is a direct \matrix

square" of the original KN map �! �i!; f ! �=f . Note, that in the both cases i does

not imply complexi�cation, but is needed just to accommodate the di�erent signature of

cosets relevant to two alternative representations. Similar a KN map exists for arbitrary

number p of vector �elds. For p = 0 it was given earlier in [24]. (The application of the

integrable systems techniques to this case was recently discussed by Bakas [25].)

To summarise: coupling of the dilaton{axion system to gravity leads to a three{

dimensional �{model with a K�ahler target manifold being a \square" of the corresponding

General Relativity manifold. When vector �elds are added, the K�ahler potential still

preserves its value given by the product of Ernst and axidilaton K�ahler potentials. This

gives rise to various manifestations of the square property of the N = 4 supergravity with

respect to General Relativity and provides new tools in the search of classical solutions

to this theory.
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