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Abstract

Regge calculus, a simplicial approximation to General Relativity, is used to construct

initial data for several non-rotating axisymmetric spacetimes at a moment of time

symmetry. In particular, axisymmetric Brill wave and black hole initial data are

presented, following on from the work of Dubal. Regge initial data for a combined

black hole plus radiation spacetime is also constructed, and comparison of the Regge

results with recent work by Bernstein is encouraging.

1. Introduction

Regge calculus [1] is an approximation to General Relativity which replaces the smooth

manifold with a lattice of simplicial blocks. It has been used successfully in a variety of

highly symmetric test problems, including the construction of initial data for black hole

spacetimes [2],[3], and the evolution of such data [4]. See Williams and Tuckey [5] for a

recent review.

If Regge calculus is to become an accepted tool in numerical relativity, it is vital that

it be tested in spacetimes with less constrictive symmetries, and the results compared to

those of other numerical techniques. In this work we use Regge calculus to construct initial

data for several non-rotating axisymmetric spacetimes at a moment of time symmetry, as

a prelude to the full evolution problem.

We begin with a short survey of the important results from the continuum theory,

and then construct a Regge lattice suitable for the study of pure Brill wave initial data,

similar to the work of Dubal [6]. The convergence properties of our axisymmetric lattice

are then investigated in the special case of spherically symmetric black hole boundary

conditions, and �nally initial data for the combined Brill wave plus black hole spacetime

is constructed at a moment of time symmetry.

Standard �nite-di�erence techniques have been used to study pure Brill wave space-

times by both Eppley [7], Miyama [8], and Dubal [6], where the results were directly

compared to �nite di�erence solutions. The Brill wave plus black hole spacetime has been

extensively investigated by Bernstein [9].
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2. Continuum Initial Value Problem

At a moment of time symmetry the Hamiltonian constraint reduces to

(3)

R = 0;

where

(3)

R is the intrinsic curvature of the spacelike hypersurface. We choose to use the

axisymmetric gravitational wave spacetime suggested by Brill [10],
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where the arbitrary function q(r; z) can be considered the distribution of gravitational

wave amplitude [11]. It is not entirely arbitrary, however, as it must satisfy the boundary

conditions

q(0; z) = 0; q

r

(0; z) = 0;

and q

z

(�; 0) = 0;

so that the hypersurface has an asymptotically well de�ned mass.

The standard technique for constructing initial data is to use a conformal decomposi-

tion of the form
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represents the physical metric. Applying the Hamiltonian constraint to this

metric yields the linear equation
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which is solved for  (�; z) once q(�; z) is given.

The Brill mass of the initial slice can be expressed as
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and Wheeler [11] has shown that for small amplitude waves the mass varies as the square

of the amplitude.

3. The Regge Lattice

In order to capture the required symmetries, we choose to construct our lattice by aligning

blocks along coordinate-ordinate axes. Although this necessitates an underlying coordi-

nate choice, it provides results more easily interpreted in terms of standard 3+1 calcula-

tions. The disadvantage to this approach is that the blocks are not rigid even when all

leg lengths are speci�ed, so extra conditions must be imposed. This will be achieved by

relating various angles in each block to the surrounding leg lengths.
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Given the leg lengths (metric information) l

i

, and the associated defects "(l

i

) (curvature

measured about the leg l

i

via parallel transport), the Regge equivalent of the Hamiltonian

constraint at each vertex in the lattice is [11]

X
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where the summation is over all legs l

k

which meet at the vertex.
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Figure 1: The generic axisymmetric block which forms the basis of the lattice, shown

with respect to a global polar coordinate system.

With the choice of lattice pictured in �gure (1), the Regge-Hamilton initial value

equation takes the form
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and calculating the necessary de�cit angles yields the general axisymmetric Regge initial

value equation,
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where �

i

and �

j

are forward di�erence operators, de�ned as �

i

r
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). In

order to obtain this axisymmetric equation the limit as �� ! 0 has been taken, with

only the leading order terms retained.

Before a solution can be obtained, the angles A

ij

, B

ij

and �

ij

(see �gure 1) must be

related to the leg lengths D

ij

, Z

ij

and r

ij

��. Our choice of lattice approximates the space

with prisms rather than tetrahedra, so we must ensure that the faces of each block remain


at, otherwise diagonal legs must be introduced to divide each face into two triangles.

This 
atness criteria requires that the two independent normals to the face are parallel,

providing the required condition relating angles and leg lengths.

In the case of Schwarzschild or Minkowski initial data, the 
atness criteria on each

face implies simple relations between the leg lengths and angles,
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These conditions are equivalent to demanding that the face (Z
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face at i+1; j, (Z
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��), are parallel. Since the solutions to be constructed in this

paper may be viewed as small perturbations to Minkowski or Schwarzschild initial data,

for simplicity we assume that the above 
atness criteria are also applicable in our case.

In order to solve the initial value equation for the complete set of leg lengths, a

conformal decomposition is used. As is the case in the 3+1 initial value problem, this

results in a single unknown quantity, the conformal factor  , at each vertex. Although

the resultant Regge-Hamilton equation is not linear, it is at worst weakly non-linear, as

shown by Dubal [6].

If the structure of our lattice is aligned with the coordinate axes of cylindrical polars,

examining the spacelike conformal Brill metric

ds

2

=  

4

n

e

2q

�

d�

2

+ dz

2

�

+ �

2

d�

2

o

suggests a conformal Regge decomposition of the form
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The notation H

i+

1

2

;j

indicates that the quantity H is centered between the i; j and i+1; j

vertices.

Similarly, it is possible to consider the block in �gure (1) as aligned with a global

spherical polar coordinate system. These coordinates will simplify the application of

spherically symmetric boundary conditions when investigating axisymmetric Brill waves

in a black hole spacetime. In this case, the face (Z

ij

; r

ij

) lies at constant r

i

, whereas the

legs D

ij

stretch from one such face to the next, and it should be noted that the labels i

and j now refer to radial and azimuthal coordinates.

Using such coordinates with an exponential radius de�ned by r = ae
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Again comparing this with the Regge legs aligned along each coordinate axis we make a

Regge conformal transformation of the form
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In order to solve the Regge initial value problem in a particular instance, a choice

of coordinate construction must be made, and the relevant expressions (4) or (5) are

used in the axisymmetric Regge-Hamiltonian constraint (3). The resultant equation is

solved for  

2

ij

at each vertex using Newton-Raphson iteration, given appropriate boundary

conditions and the form of the function q. The initial guess was taken to be  = 1.

4. Brill wave solution

In this section we apply the Regge lattice (4), based on cylindrical polar coordinates, to

reproduce the Brill wave solutions obtained via �nite di�erencing by Eppley [7] and the

Regge Calculus results of Dubal [6].

To allow comparison we choose the form of q(�; z) given by Eppley,
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The boundary conditions on q given above imply that n � 5, and the boundary conditions

on  are of the form
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Figure 2: Perturbations from 
atness,  

2

e

q

� 1, for pure Brill waves with A = 0:01,

n = 5 on a 50� 50 grid.

Figure 3: Mass of the pure Brill wave space plotted against amplitude of the wave on a

50� 50 grid with n = 5.
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The inner and re
ection boundary conditions are implemented via a quadratic power

series expansion into the domain, whereas the outer Robin boundary condition is applied

to the Regge quantities  

ij

via standard centered di�erencing.

Following Dubal, de�ne the metric perturbation as




��

� 1 =  

2

e

q

� 1;

which may be viewed as the maximum fractional displacement of nearby observers by the

passage of the wave. The perturbation is plotted in Figure (2) for a small amplitude wave

with A = 0:01 and n = 5 on a 50 � 50 grid. As would be expected from the form of

q(�; z), the perturbations are located close to the axis of symmetry, and centered about

the equatorial plane. These results agree well with the previous Regge and �nite di�erence

calculations by Dubal [6].

Finally, �gure (3) shows the variation of logm with logA, using the same resolution

as before, which indicates that the mass varies as the square of the Brill wave amplitude,

as expected.

5. Black Hole Initial Data

As a further test of the axisymmetric code, spherically symmetric boundary conditions are

applied and the solution is compared with the Schwarzschild black hole. The convergence

rate of the Regge model can also be calculated using this exact solution of the vacuum

Einstein �eld equations.

In order to apply such boundary conditions, it is convenient to choose a lattice aligned

with spherical polar coordinates. The conformal decomposition (5) is used, together with

q(�; �) = 0 and inner boundary conditions of the form
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where � = 0 corresponds to an Einstein-Rosen bridge at r = a = m=2. Again we choose

to use a standard Robin condition at the outer boundary,
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is the radial coordinate of the outer boundary. The corresponding exact

solution is
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Figure 4: Regge black hole solution (triangles) against exact solution (solid line) for the

case m = 2 on a 50� 50 grid.

Figure 5: Relative error e

n

in black hole solution (m = 2) on an n� n grid.
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where  

ij

is the Regge solution at the vertex ij,  

bh

(ij) is the exact solution evaluated at

ij, and  

av

is the average value of  across the grid.

The solution for  

ij

and the corresponding convergence rate are plotted in �gures

(4) and (5) respectively. It is clear that although the relative error is quite small, the

convergence rate is only �rst order in the grid spacing.

6. Brill wave plus black hole solution

Using the spherical lattice, based on equations (5), we investigate the initial data of Bern-

stein [9], which contains Brill wave perturbations on a black hole spacetime. Following

Bernstein, we choose q(�; �) to be of the form

q = a sin

2

�

n

e

�g

2

+

+ e

�g

2

�

o

with g

�

= (� � b) =!, which contains the set of free parameters (a; b; !).

The boundary conditions in this case are identical to those used in the pure black hole

space described above, with a re
ection symmetric Einstein-Rosen bridge at r = m=2.

Figure 6: Ratio of Black hole plus Brill wave data to black hole initial data ( = 

bh

) with

parameters (1; 2; 1) on a 50� 50 grid.

For the particular choice of parameters (1; 2; 1), �gure (6) displays the solution to the

Regge-Hamiltonian constraint (3) as  = 

bh

, the ratio of the black hole plus Brill wave

solution to the pure black hole solution of the previous section. The Regge calculations

were performed on a 50 � 50 grid with m = 2, and the outer boundary was placed at
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� = 6. Figure (6) is plotted on a pseudo-cartesian grid de�ned using x = (�+�

0

) sin � and

y = (�+�

0

) cos �, where �

0

=

1

2

is used to display an arti�cial throat in (�; �) coordinates.

These results compare well with the initial data of Bernstein [9], calculated using a

second order �nite-di�erence approximation to the Hamiltonian constraint (1).

7. Conclusions

Comparison of the Regge results with the standard �nite di�erence calculations of Eppley

[7] and Dubal [6] in the case of pure Brill radiation, and Bernstein [9] in the black hole plus

Brill wave spacetime, is encouraging. The Regge Calculus solutions display features sim-

ilar to those of the �nite di�erence and analytic solutions, although further investigation

of the Regge scheme's convergence rate is needed.

Previous work [12] has shown that the spherically symmetric lattice used by Wong [2]

to model black hole initial data converges as the second power of the radial grid spacing,

whereas our axisymmetric code displays only �rst order convergence when specialised to

spherically symmetric boundary conditions. This disappointing convergence result may

be caused by assumptions made in constructing the lattice, or may be of a more serious

nature [13], [14].

It is possible that our simplifying choice for the angles A

ij

, B

ij

and �

ij

is the cause of

the poor convergence rate, and so it would be worth investigating other choices. However,

experience suggests that it may be more e�cient to replace the prism based lattice with

a full triangulation into tetrahedra. This simplectic approach may also greatly simplify

the time evolution [15] of the initial data presented here.
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