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Abstract

Conventional non-Abelian SO(4) gauge theory describes gravity if the gauge

�eld possesses the speci�c polarised vacuum state. In this vacuum the instantons

and anti-instantons have a preferred direction of orientation. Their orientation

plays a role of the order parameter for the polarised phase of the gauge �eld. The

interaction of a weak and smooth gauge �eld with the polarised vacuum is described

by an e�ective long-range action which is identical to the Hilbert action of general

relativity. In the classical limit this action results in the Einstein equations of

general relativity. Gravitational waves appear as the mode describing propagation

of gauge �eld which strongly interacts with the oriented instantons. The Newton

gravitational constant describes the density of the considered phase of the gauge

�eld. The radius of the instantons under consideration is comparable with the

Planck radius.

1. Introduction

I wish to show that gravity arises as a particular e�ect in the conventional SO(4) gauge

theory. This paper presents in detail and develops the idea �rst reported in Ref.[1]. The

theory under consideration is the conventional Yang-Mills gauge �eld theory formulated

in 
at Minkowski space. There is no nontrivial Riemann metric on the basic level of the

theory. The Lagrangian of the theory describes gauge bosons interacting with fermions

and scalars. There are no gravitons in the Lagrangian. The Newton gravitational constant

does not manifest itself in the Lagrangian.

Our purpose is to consider a new phase of the gauge �eld. In this phase the vacuum

has a nontrivial structure, that leads to a strong interaction between the vacuum and

long-range 
uctuations of the gauge �eld. As a result the low-energy degrees of freedom

of the gauge �eld acquire quite unusual and surprising properties. Firstly, they can be

adequately described by the Riemann geometry based on some Riemannmetric. Secondly,

an e�ective action describing low-energy degrees of freedom of the gauge �eld proves to be

identical to the Hilbert action of general relativity. Thirdly, in the classical approximation

�
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the metric considered satis�es the Einstein equations of general relativity. Fourthly, there

appear in the theory spin-2 excitations describing some particular low-energy degrees of

freedom of the gauge �eld interacting with the nontrivial vacuum. These remarkable

properties indicate that the considered gauge �eld construction describes gravity.

The phase considered may be described in terms of BPST instantons [2]. An instanton

is known to possess eight degrees of freedom: four of them give its position, one is its

radius, and the remaining three describe its orientation. These later ones play a crucial

role in our discussion. In the usual phases of gauge theory orientations of instantons

are arbitrary. In this paper a phase in which instantons and anti-instantons are ordered,

having a preferred direction of orientation, is considered. Thus in this phase the orien-

tation degrees of freedom of (anti)instantons are frozen. A possible way to visualise this

vacuum in terms of a simple physical analogy is to compare it with the usual ferromag-

netic or antiferromagnetic phases in which spins of atoms have a preferred orientation.

The (anti)instantons constituting this vacuum will be called \polarised instantons" or

\a condensate of polarised instantons". The vacuum itself will be referred to as \the

polarised vacuum". The basic property of the phase considered will be called Instanton-

Anti-Instanton Polarisation (IAP) following Ref.[1]. The density of the condensate of

polarised (anti)instantons is described by a length parameter which depends on radii and

separations of the polarised (anti)instantons. This length parameter is equal to the Planck

radius. The Newton gravitational constant appears in the theory as the inverse density

of the condensate. Excitations of the gauge �eld strongly interact with the condensate

if the wavelength of the excitations exceeds the Planck radius. In this case the in
uence

of the condensate is strong, it changes the nature of the excitation. Instead of a spin-1

gauge boson there appears a new excitation, which is a spin-2 graviton. For high-energy

excitations whose wavelength is smaller than the Planck radius the condensate does not

play a signi�cant role. Therefore these excitations describe the usual gauge theory �elds

of spin 0; 1=2 and 1. This means that e�ects of gravity manifest themselves only in the

region of large distances, larger than the Planck radius. For smaller distances gravity

disappears. The quantisation of the theory is straightforward because basically it is a

gauge theory. In particular there is no di�culty with the renormalisability because for

the short-distance region the theory reveals the usual properties of gauge theory.

IAP, the basic necessary property of the vacuum in the picture considered, is intro-

duced in Section 3. as a postulate. Certainly one question to be addressed is whether IAP

can be derived in the framework of the gauge theory. A mechanismwhich can result in the

IAP phase of the SO(4) gauge theory was considered in recent Refs.[3],[4]. There gauge

theory models were suggested in which there appears an interaction between instantons

making their identical orientation more preferable. The possibility of the phase transition

into a IAP state was veri�ed in [4] in the framework of mean �eld approximation.

2. The pair of instanton and anti-instanton

For the SO(4) gauge group the instantons and anti-instantons can belong to any one

of the two available su(2) subalgebras, so(4) = su(2) + su(2). In order to focus our
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attention on those (anti)instantons which are useful for our purposes a speci�c instanton-

anti-instanton pair is considered in this Section. Let us choose the generators for one su(2)

to be (�1=2)�

a

ij

and the generators for the other to be (�1=2)��

a

ij

, and refer to these algebras

as su(2)� and su(2)��. Here �

a

ij

; ��

a

ij

are the 't Hooft symbols [5], a = 1; 2; 3; ij = 1; � � � ; 4.

The strength of the gauge �eld in this notation is

F

ij

��

= �

1

2

(F

a

��

�

a

ij

+

�

F

a

��

��

a

ij

) ; (1)

where F

a

��

belongs to su(2)� and

�

F

a

��

belongs to su(2)��. Consider an instanton belonging

to su(2)�� in the external gauge �eld F

ij

��

in Euclidean formulation of the theory. According

to [7],[6] there exists a contribution to the action describing the interaction of the instanton

with the �eld

�S

I

= �

�

2

�

2

I

g

2

��

a

��

��

b

ij

�

C

ab

F

ij

��

(x

I

) : (2)

Here �

I

; x

I

;

�

C

ab

2 SO(3) are the radius of the instanton, its position, and the matrix

describing its orientation. Similarly the interaction of an anti-instanton belonging to the

other subalgebra su(2)� with the gauge �eld is described by the action

�S

AI

= �

�

2

�

2

AI

g

2

�
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��

�
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ij

C

ab

F

ij

��

(x

AI

) : (3)

Here �

AI

; x

AI

; C

ab

2 SO(3) are the radius, position, and the orientation matrix of the anti-

instanton. Let us consider now a pair which consists of an instanton belonging to su(2)��

and anti-instanton belonging to su(2)�. These two topological objects are in di�erent

su(2) subalgebras and therefore they do not interact with each other. Suppose that their

radii are equal, �

I

= �

AI

= �. Suppose also that the external �eld does not strongly

vary with respect to the distance x

I

� x

AI

, F

ij

��

(x

I

) � F

ij

��

(x

AI

) = F

ij

��

(x

0

), where x

0

is

the position of the pair x

0

� x

I

� x

AI

. Then the action describing the interaction of the

instanton and anti-instanton with the external �eld can be found simply as a sum of the

right hand sides of Eqs. (2), (3)

�S

I;AI

= �

�

2

�

2
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��
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) : (4)

Now introduce the matrix

h

ij

2 SO(4) (5)

which rotates the generators of the gauge transformations according to

h

ik

h

jl

�

a

kl

= C

ab

�

b

ij

; h

ik

h

jl

��

a

kl

=

�

C

ab

��

b

ij

: (6)

It is clear that for any pair C

ab

,

�

C

ab

2 SO(3) there exists h

ij

2 SO(4) satisfying Eq.

(6). One can say that h

ij

describes the orientation of the instanton-anti-instanton pair

considered. Eq. (4) may be presented with the help of h

ij

in a compact form

�S

I;AI

= �

4�

2

�

2

g

2

h

i�

h
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F

ij

��

(x
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) ; (7)
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which will be very useful in the following discussion. Deriving Eq. (7) the identity

�

a

��

�

a

ij

+ ��

a

��

��

a

ij

= 2(�

i�

�

j�

� �

j�

�

i�

) (8)

was used. Remember that the Latin letters i; j label the indexes of variables in the isotopic

space while the Greek letters �; � label the indexes in the coordinate space. The symbols

�

a

��

, ��

a

��

are used to describe the orientation of instantons and anti-instantons in the

coordinate space. In contrast, the symbols �

a

ij

, ��

a

ij

are the generators of two su(2) gauge

subalgebras, see Eq. (1). According to Eq. (8) there appears a correspondence between

the indexes of coordinate space and indexes of isotopic space. This fact was used writing

the matrix h

i�

in Eq. (7) with one Latin index and one Greek one

h

i�

= h

ik

�

k�

: (9)

Notice that the correspondence between indexes of di�erent spaces is a manifestation of

the known property of an instanton: it is transformed identically by gauge and coordinate

transformations.

It is important that the action Eq. (7) has an algebraic structure which is very close

to the algebraic structure of the Lagrangian of general relativity. In the following Section

a way to transform this similarity into identity is suggested.

3. The condensates of instantons and anti-instantons

Eq. (7) gives an action which depends on the gauge �eld at the particular point x

0

where

the instanton-anti-instanton pair in question is located. Let us generalise this result

considering a �nite concentration of pairs which are similar to the single pair considered

in the previous Section. Our �rst step is to consider the vicinity V of some point x

0

.

Let the radius r

V

of this vicinity be much larger than the radius r

mic

which characterises

the microscopic quantum 
uctuations of the gauge �eld considered, r

V

� r

mic

. At the

same time let the radius of the vicinity be small compared with the radius r

mac

which

characterises the variation of a gravitational �eld which we are going to describe, r

V

�

r

mac

.

Remember that our major goal is to eliminate a geometry as a basic guiding principle

from the theory. It is instructive, however, to use a geometrical idea at this point of the

discussion. We consider a local Galilean reference frame, a falling elevator reference frame,

and assume that the microscopic physical picture in this reference frame looks simpler

than in any other coordinates. It is important to emphasise that this approach is adopted

in this Section in order to simplify presentation of the properties of the order parameter

of the IAP phase.

Let us choose coordinates in V which give a Galilean reference frame at the point

x

0

. The inequality r

V

� r

mac

shows that the chosen coordinates give approximately a

Galilean reference frame at every point x 2 V . A clear way to generalise the result of

the previous section is to suppose that in the vicinity of any point x 2 V there exists

an instanton-anti-instanton pair, which is similar to the one considered in the previous
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section. In this pair the instanton belongs to su(2)�� and the anti-instanton to su(2)�. In

order to simplify our discussion let us imagine for a time that the dilute gas approximation

is valid. Note that the physical picture considered may remain true even if the conditions

of applicability of the dilute gas approximation are violated (see discussion below). Thus

consider the gas of su(2)�� instantons and su(2)� anti-instantons. Certainly the radii �

of (anti)instantons are supposed to be smaller than the radius of the vicinity considered,

� � r

mic

� r

V

. Let us examine the interaction of this gas with the external gauge �eld

supposing that the �eld strength is small, jF

ij;��

j � 1=(g

2

�

2

) and varies smoothly on the

instanton radius �. The interaction of this �eld with the (anti)instantons is described by

the sum of the terms given in Eq. (4) resulting in the action
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�

2

g

2

[�
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�

b
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k

C

ab

k

�

2

k

F
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��
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k

) + ��

a

��

��

b

ij

X

l

�

C

ab

l

�

2

l

F

ij

��

(x

l

)] : (10)

Here the index k enumerates the anti-instantons, l enumerates the instantons, x

k

, �

k

,

C

ab

k

2 SO(3) are the position, radius and orientation matrix of k-th anti-instanton, x

l

,

�

l

, C

ab

l

2 SO(3) - the position, radius and orientation matrix of l-th instanton. The

summation in Eq. (10) runs over (anti)instantons in the vicinity considered, x

k

; x

l

2 V .

Our next goal is to derive the e�ective action describing the interaction of the external

gauge �eld with the topological objects considered. With this purpose let us average the

action Eq. (10) over the short-range 
uctuations in the vacuum. The result reads

�S = �

Z

[�

a

��

�

b

ij

M

ab

(x) + ��

a

��

��

b

ij

�

M

ab

(x)]F

ij

��

(x)d

4

x : (11)

Here

M

ab

(x) = �

2

h

1

g

2

�

2

C

ab

n(�;C; x)i ;

�

M

ab

(x) = �

2

h

1

g

2

�

2

�

C

ab

�n(�;

�

C; x)i ; (12)

where n(�;C; x) is the concentration of the anti-instantons having the radius � and ori-

entation C = C

ab

, and �n(�;

�

C; x) is the concentration of instantons with the radius � and

orientation

�

C =

�

C

ab

. The brackets h i denote averaging over short-range 
uctuations of

the gauge �eld. For the dilute gas picture considered this should include the averaging

over positions, radii and orientations of instantons. One can assume that the concentra-

tions n(�;C; x); �n(�;

�

C; x) depend on x provided this is a smooth dependence, negligible

in the region of separation between instantons.

For the well-known phases of the gauge �eld { the con�nement phase, the Higgs

phase and the others { the probability for the instanton or anti-instanton to have some

orientation does not depend on the orientation itself. Thus in these phases averaging over

the orientations C

ab

,

�

C

ab

in Eqs. (12) result in zero values for M

ab

,

�

M

ab

.

We are interested in the phase in which su(2)�� instantons and su(2)� anti-instantons

having the preferred orientation, are polarised. This means that the probability for

(anti)instanton to have some orientation depends on the orientation itself. There are

preferred, more probable, orientations for them. As a result the matrices M

ab

(x) and

�

M

ab

(x) take nonzero values. Generally speaking, averaging of the orthogonal matrices
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C

ab

,

�

C

ab

may result in any 3�3 matrices depending on the way the instantons are ordered.

Therefore, one can imagine a number of possible phases arising for di�erent possible or-

derings of instantons. We are interested in the particular phase for which the averaged

matrix remains orthogonal, up to some coe�cient which should characterise the inten-

sity of the condensate. The necessity of this condition is clear from the example of the

instanton-anti-instanton pair considered above. Thus let us suppose that the ordering of

instantons results in the following conditions

M

ab

(x) =

1

4

f C

ab

(x);

�

M

ab

(x) =

1

4

�

f

�

C

ab

(x); (13)

where C

ab

(x) 2 SO(3) is the orthogonal matrix describing an orientation of the condensate

of anti-instantons belonging to su(2)�, and

�

C

ab

(x) 2 SO(3) describes an orientation of

the condensate of instantons belonging to su(2)��.

The dimensional constants f ,

�

f describe the intensity of the two condensates con-

sidered, while the coe�cients 1=4 chosen in Eq. (13) simplify the following formulas.

Remember now that instantons and anti-instantons are transformed one into another by

inversion. Therefore the conservation of parity depends on the properties of the conden-

sates of instantons and anti-instantons. In order to preserve the parity conservation law

the intensities of the two condensates should be equal, f =

�

f . The constant f , as seen

from Eq. (12), depends on radii and separations of those instantons which belong to the

condensate, as well as on the gauge coupling constant.

Now one can follow an approach similar to the one described by Eqs. (5)��(7).

Namely, let us introduce the matrix h

ij

(x) 2 SO(4) which satis�es conditions similar

to Eq. (6)

h

ik

(x)h

jl

(x)�

a

kl

= C

ab

(x)�

b

ij

; h

ik

(x)h

jl

(x)��

a

kl

=

�

C

ab

(x)��

b

ij

: (14)

Then from Eqs. (11), (13) and (14) one �nds the action

�S = �f

Z

V

h

i�

(x)h

j�

(x)F

ij

��

(x)d

4

x : (15)

Integration here is restricted to the vicinity V of the point x

0

considered. In Eq. (15) a

notation

h

i�

(x) = h

ik

(x)�

k�

; (16)

similar to Eq. (7) is used. In deriving Eq. (15) equation (8) was used.

The integrand in Eq. (15) remains invariant under two types of transformations. It is

obviously invariant under gauge transformations

F

ij

��

(x)! F

0ij

��

(x) = O

ik

(x)O
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(x)F

kl

��

(x) ; (17)

h

i�

(x)! h

0i�

(x) = O

ik

(x)h

k�

(x) ; (18)

where the matrix O

ij

(x) 2 SO(4) describes a gauge transformation. It is invariant as well

under coordinate transformations

x

�

! x

0

�

; (19)
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@x

0

�

F

ij

��

(x) ; (20)
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(x) : (21)

Remember that the quantity h

i�

(x) was de�ned above in the Galilean reference frame in

which it has a particular structure h

i�

(x) 2 SO(4). The transformation Eq. (21) gives a

de�nition of this matrix in arbitrary coordinates. According to de�nition (21) h

i�

(x) may

not belong to SO(4). In particular its determinant according to Eq. (21) is equal to the

Jacobian

det

h

h

0i�

i

= det

"

@x

0

�

@x

�

#

; (22)

and may di�er from unity. Rewriting Eq. (15) in arbitrary coordinates one gets

�S = �f

Z

h

i�

(x)h

j�

(x)F

ij

��

(x) deth(x) d

4

x : (23)

It is convenient for further discussion to de�ne h

i

�

(x) as the inverse matrix

h

i�

(x)h

j

�

(x) = �

ij

, h

i�

(x)h

i

�

(x) = �

��

. The quantity deth(x) in Eq. (23) is the deter-

minant of this matrix deth(x) = det[h

i

�

(x)] = (det[h

i�

(x)])

�1

, which according to Eq.

(22) describes the Jacobian of the coordinate transformation.

Up to this point our discussion was restricted to the small neighborhood V of the point

x

0

where one is able to choose Galilean coordinates to begin with. The �nal expression

found Eq. (23) has a general form valid in any coordinate frame. This fact permits an easy

extension of this result. Really, one can choose now any point in space. We assume that

IAP takes place. It means that in the Galilean coordinates in the vicinity of this point

there are polarised instantons 2 su(2)�� and polarised anti-instantons 2 su(2)�. Their

interaction with the external gauge �eld is described by Eq. (23), if the integration in this

formula is restricted to the vicinity of the point considered. Summing contributions of

the vicinities of di�erent points in space one �nds that Eq. (23) may be applied to all the

space described in arbitrary coordinates.

We will call the vacuum satisfying Eqs. (12), (13) the IAP phase. The matrices

C

ab

(x),

�

C

ab

(x) describing the orientations of anti-instantons and instantons play the role

of the order parameter for this phase. This order parameter may be thought of as the

C

ab

(x)�

�

C

ab

(x) 2 SO(3)�SO(3) matrix. The equivalent de�nition of the order parameter

is given by the matrix h

i�

(x) 2 SO(4) de�ned in Eq. (14). It describes orientation of

both instantons and anti-instantons. It is important that these de�nitions of the order

parameter are valid only in the Galilean reference frame. The transformation of the order

parameter to arbitrary coordinates given by Eq. (21) results in the fact that in arbitrary

coordinates the order parameter satis�es a condition

h

i�

(x)

[deth(x)]

1=4

2 SL(4) : (24)

Eq. (23) plays a very important role in the following discussion. In deriving it we used

Galilean coordinates, thus giving reference to the geometry based idea. This was done
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to simplify the presentation. The approach considered does not rely on the geometry of

the space-time. Therefore it is important to formulate the idea without any reference to

the geometry. In order to do this let us keep in mind that we suppose space-time to be

basically 
at. Therefore there are initial basic coordinates of this 
at space-time in which

the gauge theory is formulated. Let us suppose that in these coordinates all four possible

topological excitations in the vacuum are polarised, i.e., there are polarised instantons

and anti-instantons in both su(2)� and su(2)�� subalgebras. The orientation of the k� th

topological object may be described with the help of 6� 6 matrix S

k

S

k

=

 

C

k

D

k

�

D

k

�

C

k

!

: (25)

Here C

k

;

�

C

k

;D

k

;

�

D

k

2 SO(3). C

k

describes the orientation if the k-th topological object

is the anti-instanton 2 so(2)� gauge subalgebra, D

k

describes the orientation if it is the

instanton 2 so(2)�,

�

D

k

- if it is the anti-instanton 2 so(2)��, and

�

C

k

- if it is the instanton

2 so(2)��. Following steps very similar to those in the discussion above, one can show that

the interaction of (anti)instantons with the external gauge �eld is described by the action

�S = �

Z

�

A

��

�

B

ij

M

AB

(x)F

ij

��

(x)d

4

x ; (26)

where the 6 � 6 matrix M

AB

; A;B = 1; � � � ; 6 describes the averaged orientation of all

topological objects available in the vacuum

M

AB

(x) = �

2

h

1

g

2

�

2

S

AB

n(�; S; x) i : (27)

Here n(�; S; x) is the concentration of (anti)instantons having the radius �, and the ori-

entation described by the matrix S de�ned in Eq. (25).

In order to reproduce Eq. (23) this orientation should satisfy particular conditions. In

particular, it should have the following form

M

AB

(x) =

1

4

f M

AB

(x) ; (28)

where f is a constant characterising the density of the condensate (compare Eq. (13)

above), and the 6� 6 matrix M

AB

(x) satis�es

M

AB

(x) 2 SO

+

(3; 3) : (29)

Remember that M 2 SO(3; 3) means that

M�M

T

= � ; � =

 

^

1

^

0

^

0 �

^

1

!

: (30)

where numbers with hats represent 3�3 diagonal matrices. The notation SO

+

(3; 3) is used

to describe the subset of all those matrices M , M 2 SO(3; 3), which can be transformed

into the unity matrix by a continuum transformation in the SO(3; 3) group.
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In this approach the matrixM

AB

(x) 2 SO

+

(3; 3) plays the role of an order parameter.

Remember now that there is the known homomorphism between matrices belonging to

SL(4) and matrices belonging to SO(3; 3), SL(4)

�

=

SO(3; 3) [8]. This homomorphism

may be presented as a statement that for any M

AB

(x) 2 SO

+

(3; 3) there exists a matrix

h

i�

(x) 2 SL(4) satisfying an equality

�

A

��

�

B

ij

M

AB

(x) = 2

�

h

i�

(x)h

j�

(x)� h

i�

(x)h

j�

(x)

�

: (31)

Here generalised 't Hooft symbols are introduced �

A

= �

a

if A = a = 1; 2; 3 and �

A

= ��

a

if A � 3 = a = 1; 2; 3. Eq. (31) shows that the order parameter may be considered not

only as a M

AB

(x) 2 SO(3; 3) matrix, but as h

i�

(x) 2 SL(4) matrix as well. Remember

that we use the basic, initial coordinates.

Substituting Eq. (31) into Eqs. (26), (28) one �nds that the interaction of the external

gauge �eld with the vacuum in the basic coordinates is described by the action Eq. (15).

Using the transformation to the arbitrary coordinates Eq. (21) we derive the desired Eq.

(23).

We come to the following de�nition of polarisation: IAP means that all four topo-

logical excitations available in the SO(4) gauge group are polarised in the initial basic

coordinates. Their polarisation de�ned in Eqs. (25), (27), (28) should satisfy Eq. (29).

The matrixM

AB

(x) plays the role of the order parameter for the IAP phase. The matrix

h

i�

(x) satisfying Eq. (31) gives an alternative possibility for describing the order parame-

ter. The physical meaning of Eq. (29) is simple. It states that there always exist particular

local coordinates in which there are only two polarised gases, one of them is the gas of

polarised instantons 2 su(2)��, and the other one is the gas of polarised anti-instantons

2 su(2)�.

The most important property of the IAP phase is the fact that the gauge �eld interacts

with the vacuum. This interaction is described by the action Eq. (23).

4. The Einstein equations

The action Eq. (23) describes the interaction of the order parameter in the IAP phase

with a gauge �eld. Consider the classical approximation. The �eld F

ij

��

(x) is supposed

to be weak and smooth. This means that it has the trivial topological structure on

the microscopic level. In contrast, the order parameter h

i�

(x) describes those degrees of

freedom of the gauge �eld which are associated with instantons and therefore have highly

nontrivial microscopic topological structure. Thus F

ij

��

(x) and h

i�

(x) describe the states

of the gauge �eld with quite di�erent topological structure. Di�erent topology enables

one to use them as a set of two independent variables. Denoting the vector potential of

the external �eld F

ij

��

(x) by A

ij

�

(x) one can consider the action Eq. (23) as the functional

�S = �S(h

i�

(x); A

ij

�

(x)). Then the classical equations read

�(�S)

�A

ij

�

(x)

= 0 ; (32)
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�(�S)

�h

i�

(x)

= 0 : (33)

From Eq. (32) one �nds

r

ik

�

[

�

h

k�

(x)h

j�

(x)� h

k�

(x)h

j�

(x)

�

deth(x)] = 0 : (34)

Here r

ij

�

= @

�

�

ij

+A

ij

�

(x) is the covariant derivative in the gauge �eld. Eq. (33) gives

h

j�

(x)F

ij

��

(x)�

1

2

h

i

�

(x)h

k�

(x)h

j�

(x)F

kj

��

(x) = 0 : (35)

In order to present Eqs. (34), (35) in a more convenient form let us de�ne three quantities,

g

��

(x);�

�

��

(x), and R

�

���

(x):

g

��

(x) = h

i

�

(x)h

i

�

(x) ; (36)

�

�

��

(x) = h

i�

(x)h

j

�

(x)A

ij

�

(x) + h

i�

(x)@

�

h

i

�

(x) ; (37)

R

�

���

(x) = h

i�

(x)h

j

�

(x)F

ij

��

(x) : (38)

Remember that space-time under consideration is basically 
at. Therefore Eqs. (36),

(37), (38) just de�ne the left-hand sides. From (36), (37) one �nds that Eq. (34) may be

presented in the form �

�

��

= (1=2)g

��

(@

�

g

��

+ @

�

g

��

� @

�

g

��

). It demonstrates that we

may consider g

��

(x) as a metric and �

�

��

(x) as a Christo�el symbol. Moreover, one �nds

that the quantity R

�

���

(x) introduced in Eq. (38) turns out to be equal to the Riemann

tensor. Considering now the second classical equation (35) one veri�es with the help of

Eqs. (36), (38) that it results in the Einstein equations of general relativity in the absence

of matter

R

��

�

1

2

g

��

R = 0 : (39)

Remember that up to this point our discussion took place in Euclidean space. Our �nal

result, Eq. (39) may be transformed into Minkowski space. We come to the important

conclusion. If IAP takes place in the SO(4) gauge theory then the classical approximation

for this gauge theory results in gravity. It means that there appears a Riemann metric

for which the Einstein equations are valid. These equations imply, in particular, that

there exist gravitational waves. That is an important result since the initial gauge theory

possesses no graviton on the basic level. A graviton in the picture discussed appears

as a coherent state of the gauge �eld interacting with the condensate of instantons and

anti-instantons.

Consider the action (23) when the classical Eq. (32) is valid. It is clear from (36), (37),

(38) that the form of the action Eq. (23) is identical to the action of general relativity

S

GR

, if the action S

GR

is continued into Euclidean space. Note in particular that the

sign of action Eq. (23) agrees with the sign of S

GR

. One can consider them as identical

quantities if the Newton gravitational constant k is identi�ed as

k =

1

16�f

: (40)
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Thus the density of the condensate f provides the dimensional parameter necessary in

the theory of gravity. This relation shows in particular that the radii and separations

of (anti)instantons which give the contribution to the constant f , see Eqs. (12), are

comparable to the Planck radius. This estimation is valid up to the factor equal to the

gauge coupling constant g.

It is clear that the Riemann structure discussed gives an adequate description only if

the distances considered are much larger than the Planck radius. Really, the wavelength

of the graviton in the picture considered must exceed the typical separation between

polarised instantons as well as their radii. For shorter wavelengths it is impossible to

divide the gauge �eld into the short-range part described by the polarised instantons and

the long-range part described by the weak external �eld interacting with the instantons.

Thus for wavelengths smaller than the Planck radius the gauge theory describes the usual

excitations, gauge bosons interacting with fermions and scalars.

5. Conclusion

In this paper we have discussed a new point of view on gravity. We postulated the exis-

tence of a particular nontrivial phase, called Instanton-Anti-Instanton Polarisation, in the

vacuum state of the SO(4) gauge theory. This phase appears due to polarisation of instan-

tons and anti-instantons and is characterised by the SO

+

(3; 3) order parameter describing

orientations and relative intensities of the polarised condensates of (anti)instantons. This

postulate results in a variety of very promising consequences. A Riemann metric describ-

ing the low-energy degrees of freedom of the gauge �eld arises, and the e�ective action for

these degrees of freedom turns out to be identical to the Hilbert action of general relativ-

ity, which in the classical limit results in the Einstein equations. Thus the dynamics of

gravity is shown to arise directly from the dynamics of gauge theory. In this sense gravity

is shown to be one of the e�ects in gauge theory, not an independent basic theory.

It is important that gravity manifests itself only for energies below the Planck energy.

For high energy excitations the condensates considered do not play a role and, therefore,

they are described by the usual gauge bosons, which can interact with spinor and scalar

matter �elds. This means that there is no problem whatsoever with the quantisation and

renormalisability of the theory, because for short distances it reduces to the usual gauge

theory.

Refusing to consider geometry as a cornerstone of the theory certainly poses further

challenges. For example, the equivalence principle does not follow directly from the initial

assumptions in the picture we have discussed. It is necessary to �nd an explanation for

it based on the dynamics of the gauge �eld which supplies us with the metric considered.
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