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Abstract

Quantum cosmology is the application of quantum theory to the Universe as a

whole, including the gravitational degrees of freedom. It has been put forward as

a way of understanding various features of the Universe (such as its isotropy), and

also o�ers an interesting picture of its origin. However, there remain several funda-

mental questions about the implementation and interpretation of this approach. In

particular, there is much uncertainty about the role of time in quantum cosmology

and the interpretation of the wave function of the Universe.

Recent work has raised hopes that supersymmetry might shed light on these

questions. Indeed, supersymmetry simpli�es the mathematical structure of the

quantum theory and suggests entirely new approaches to some of the most im-

portant outstanding issues.

There follows a brief review of the ideas underlying quantum cosmology, and of

the role which might be played by supersymmetry. There is also a short summary

of work done recently with Robert Graham on the emergence of a cosmological

time parameter in quantum supergravity, which provides a possible solution to the

\Problem of Time".

1. Introduction

Any attempt to describe the entire Universe as a quantum system must address the

problem of quantising gravity. Unfortunately, this question is bedevilled by profound

conceptual and technical problems. The fundamental nature of these problems is a re
ec-

tion of our inexperience with quantum phenomena outside the rather restrictive context

of quantum electrodynamics. It is hardly surprising that a paradigm based on a relatively

narrow range of physical phenomena should become rather murky when we try to extend

it to events such as the origin of the Universe itself.

However, there is nothing to stop us trying! And indeed, a number of plausible

approaches have been suggested. In this section, I will brie
y discuss a few of these

approaches and their relative strengths and weaknesses.

Perhaps conceptually simplest is the functional integral approach, in which one aims

to calculate the quantum transition amplitudes between two speci�ed spatial 3-geometries

by summing over all interpolating spacetime histories. (See [1] for a recent account of the

technical issues and an extensive bibliography.) As well as its conceptual elegance, this
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approach is manifestly covariant and can easily accommodate spatial topology changes.

However, when it comes to implementation, a number of technical di�culties and limita-

tions arise. In particular, one is generally restricted to semi-classical perturbative calcula-

tions, which take into account only small 
uctuations about classical spacetimes. While

this limitation may eventually be overcome, at present it must be seen as a serious short-

coming.

On the other hand, the canonical approach to quantum gravity is genuinely non-

perturbative. In this approach, one starts by considering the classical dynamics of a

spatial 3-geometry evolving in time and then replaces the dynamical variables by operators

acting on the wave function. The procedure is clearly not covariant, although one hopes

that covariance will be recovered when one considers physically observable quantities.

Another criticism of canonical approach to quantum gravity is that it does not readily

accommodate the possibility of spatial topology changes. While this suggests that the

canonical approach may not provide an ultimate and all-encompassing description, it does

not detract from the usefulness of the canonical approach when considering problems in

which the spatial topology is �xed.

There are several quite di�erent approaches to canonical quantum gravity, re
ecting

the di�erent ways in which one can choose the dynamical variables describing the 3-

geometry. The �rst of these goes back to Wheeler and Dewitt, who chose the canonical

coordinates as the 3-metric [2, 3]. This approach has subsequenly been investigated by

many authors, and has given rise to many technical questions which are still unanswered

[4]. In particular, it has not been clear how one should de�ne the inner product on the

Hilbert space of states, which is needed in order to understand the physical signi�cance

of the wave function. A related issue concerns the ambiguity in the choice of the time

variable [5]. These problems, and a possible solution, will be discussed in the subsequent

sections.

A rather di�erent approach to canonical quantum gravity has also been developed by

Ashtekar and his followers, in which the canonical coordinates describing the 3-geometry

are chosen as the self-dual part of the connection form rather than the metric tensor.

While this approach also runs into certain technical di�culties, it nonetheless appears

very promising. Recently there has also been considerable interest in a related idea by

Rovelli and Smolin [6], who proposed that the fundamental dynamical variables might be

chosen as the holonomies of closed loops. For an account of both these approaches, the

reader is referred to Ashtekar's book [7].

2. The Canonical Formulation of Classical General Relativity

Our review of classical General Relativity starts with the Einstein-Hilbert action

S =

Z

M

(R + L

matter

)

p

�gd

4

x (1)

where R is the Ricci curvature scalar obtained from the spacetime metric g

��

, L

matter

is

the Lagrangian density for the matter �elds and

p

�g d

4

x is the invariant 4-volume[8].
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Requiring this action to be stationary with respect to g

��

leads directly to Einstein's �eld

equations

R

��

�

1

2

Rg

��

= T

��

: (2)

To proceed to the Hamiltonian formulation of the theory, it is convenient to think of

spacetime as the history of an evolving spatial 3-manifold �(t). At each time t, �(t) is

parameterised by local coordinates x

i

, i = 1; 2; 3 and is equipped with a spacelike 3-metric

h

ij

inherited from the spacetime metric, which can now be written in the form

ds

2

= (N

i

N

i

�N

2

)dt

2

+ 2N

i

dt dx

i

+ h

ij

dx

i

dx

j

: (3)

The variable N is called the Lapse function, since Ndt is the proper time interval between

two hypersurfaces separated by a coordinate time di�erence dt. We also have N

i

=

h

ij

N

j

where the 3-vector N

j

is referred to as the Shift vector. (N

i

dt is essentially the

coordinate di�erence between points on two such hypersurfaces which are joined by normal

geodesics[3, 8].)

For the sake of simplicity let us suppose that no matter is present, so that L

matter

= 0.

The Einstein-Hilbert action can then be written

S =

Z

Ldt (4)

where the Lagrangian L at time t is given by

L =

Z

�(t)

h

1=2

d

3

xN(K

ij

K

ij

�K

2

+

(3)

R): (5)

Here,

(3)

R denotes the Ricci scalar curvature derived from the 3-metric h

ij

intrinsic to the

hypersurface �(t), while h � det[h

ij

], and

K

ij

�

1

2N

 

N

ijj

+N

jji

�

@h

ij

@t

!

(6)

are the components of the extrinsic curvature of �(t). The vertical bars appearing in the

subscripts denote covariant di�erentiation within the 3-dimensional space �(t).

The momenta conjugate to the dynamical variables h

ij

at each point in �(t) are now

found to be

�

ij

=

�L

�

_

h

ij

= h

1

2

[K

kl

h

kl

h

ij

�K

ij

] (7)

where

_

h

ij

� @h

ij

=@t. Similarly, the momenta associated with the dynamical variables N

and N

i

at each point in �(t) are

� =

�L

�

_

N

= 0; �

i

=

�L

�

_

N

i

= 0 (8)

where

_

N � @N=@t and

_

N

i

� @N

i

=@t. The vanishing momenta � and �

i

are referred to

as primary constraints [9].
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In any classical theory, the Hamiltonian is obtained from the Lagrangian by a Legendre

transformation of the form H = p

�

_q

�

� L. In this case therefore the Hamiltonian is just

H =

Z

�(t)

�

�

_

N +�

i

_

N

i

+�

ij

_

h

ij

�

d

3

x � L: (9)

Eliminating the velocities

_

h

ij

in favour of the momenta �

ij

allows us to rewrite this as

H =

Z

�(t)

�

�

_

N +�

i

_

N

i

+NH +N

i

H

i

�

d

3

x (10)

where

H =

1

2

h

�1=2

(h

ik

h

jl

+ h

il

h

jk

� h

ij

h

kl

)�

ij

�

kl

� h

1=2 (3)

R (11)

and

H

i

= �2�

ij

jj

: (12)

(We assume here that the 3-manifold �(t) is compact and without boundary. If �(t)

had a boundary, then the expression for the Hamiltonian H would also include spatial

boundary terms.)

It is clear from (8) that the velocities

_

N and

_

N

i

cannot be expressed in terms of the

momenta � and �

i

. Nonetheless, the constraints can still be exploited to eliminate

_

N

and

_

N

i

from the expression for the Hamiltonian so that the latter is a function only of

canonical coordinates and momenta.

Indeed, because of the constraints (8), one is free to add any multiples of � and �

i

to

the Hamiltonian without a�ecting its value. Thus, we are free to rede�ne the Hamiltonian

as

H =

Z

�(t)

�

�� + �

i

�

i

+NH +N

i

H

i

�

d

3

x (13)

where � and �

i

at each spacetime point are arbitrary quantities, which may be taken as

any prespeci�ed functions of the coordinates (x

i

; t), the dynamical variables (N , N

i

, h

ij

,

�, �

i

, �

ij

) and their derivatives. (It is easily checked that such a rede�nition of H will

not a�ect the validity of Hamilton's equations of motion.) The quantities � and �

i

may

be viewed as Lagrange multipliers, since requiring the Hamiltonian (13) to be stationary

with respect to their variation leads directly to the primary constraints (8).

The Hamiltonian (13) is the generator of time translations, as it should be. Indeed,

the rate of change of any functional F [N;N

i

; h

ij

; �;�

i

;�

ij

] is found to be

dF

dt

= ff;Hg (14)

where f; g denotes the (functional) Poisson bracket;

fF;Gg �

Z

�

d

3

x

h

�F

�N(x)

�G

��(x)

+

�F

�N

i

(x)

�G

��

i

(x)

+

�F

�h

ij

(x)

�G

��

ij

(x)

�

�F

��(x)

�G

�N(x)

�

�F

��

i

(x)

�G

�N

i

(x)

�

�F

��

ij

(x)

�G

�h

ij

(x)

i

(15)
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In particular, at each point x in �(t) one has

_

N(x) = fN(x);Hg = �(x);

_

N

i

(x) = fN

i

(x);Hg = �

i

(x): (16)

If we wish, we can use these identities to eliminate � and �

i

from the modi�ed Hamiltonian

(13); the latter will then reduce to the original form (15).

We now return to the constraints (8). Since �(x) and �

i

(x) vanish at all times, then

so must their time derivatives

_

�(x) and

_

�

i

(x). In fact

_

�(x) = f�(x);Hg = H(x);

_

�

i

(x) = f�

i

(x);Hg = H

i

(x) (17)

where H(x) and H

i

(x) are as de�ned in (11, 12), and so the vanishing of

_

� and

_

�

i

gives

rise at each point x 2 �(t) to the secondary constraints

H(x) = 0 (18)

and

H

i

(x) = 0: (19)

Equations (18) are referred to as the \Hamiltonian constraints" for canonical general

relativity, and express the invariance of the theory under time reparameterisations. On the

other hand, (19) are known as the \momentum" constraints, and express the invariance of

the theory under coordinate transformations within the three-dimensional manifold �(t).

In fact the secondary constraints H(x) = 0 and H

i

(x) = 0 are equivalent to four of

the ten Einstein's vacuum �eld equations; namely,

R

00

�

1

2

Rg

00

= 0; R

0i

�

1

2

Rg

0i

= 0: (20)

The content of the remaining six Einstein equations (R

ij

�

1

2

Rg

ij

= 0) is contained in the

evolution equations for the 3-metric h

ij

(x) and the conjugate momenta �

ij

(x); namely,

_

h

ij

(x) = fh

ij

(x);Hg;

_

�

ij

(x) = f�

ij

(x);Hg: (21)

Note that the last two equations are special cases of the general evolution equation (14).

In concluding this section, it must be emphasised that the evolution generated by

equations (14) will inevitably depend how we choose the quantities � and �

i

. That is, we

are forced to make a de�nite choice of � and �

i

to get a well-de�ned classical theory with

unambiguous evolution equations. (Choosing these functions is analogous to choosing

coordinate conditions before solving Einstein's equations.) In other words, the a priori

speci�cation of � and �

i

is an essential ingredient in the canonical formulation of the

classical theory.

3. Canonical Quantisation of General Relativity

Dirac's quantisation procedure can now be applied [9]. This means, �rstly, representing

the dynamical variables by operators which act on a wave functional 	(t;N;N

i

; h

ij

]. Here
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we use the coordinate representation, in which the canonical coordinates N(x), N

i

(x)

and h

ij

(x) are represented by multiplicative operators, while their respective conjugate

momenta �(x), �

i

(x) and �

ij

(x) are represented by the (functional) di�erential operators

b

�(x) = �i�h

�

�N(x)

;

b

�

i

(x) = �i�h

�

�N

i

(x)

;

b

�

ij

(x) = �i�h

�

�h

ij

(x)

: (22)

Functions of these variables, such as H, H(x) and H

i

(x), are also converted to operators.

The constraints of the classical theory are converted into conditions on the wave func-

tion. The primary constraints (8) give

b

�(x)	 = 0;

b

�

i

(x)	 = 0 (23)

which imply (on account of (22) ) that the wave function 	 will be independent of the

variables N(x) and N

i

(x).

On the other hand, the secondary constraints govern the dependence of 	 on the

metric h

ij

. At each point x 2 �(t) the Hamiltonian constraint (18) yields

c

H(x)	 = 0 (24)

where

c

H(x) is a hyperbolic di�erential operator which is second-order in �=�h

ij

(x). (

c

H(x)

is obtained by substituting �i�h�=�h

ij

(x) for �

ij

(x) in (11) after choosing some factor-

ordering). This is known as the \Wheeler-DeWitt" equation. Similarly, the momentum

constraints (19) give

c

H

i

(x)	 = 0 (25)

at each point x, where the di�erential operator

c

H

i

(x) is �rst-order in �=�h

ij

(x). These

conditions ensure that the wave function 	 is una�ected by coordinate transformations

within the 3-manifold �(t); i.e. that 	 depends only on the geometry of �(t).

The third step in the quantisation procedure is to impose on 	(t;h

ij

] the Schr�odinger

equation

i�h

@	

@t

=

c

H	; (26)

which in this case reduces to

i�h

@	

@t

=

Z

�(t)

�

�

b

�+ �

i

b

�

i

+N

c

H +N

i

c

H

i

�

d

3

x	 = 0 (27)

on account of the form of the Hamiltonian (13) and the conditions (23), (24)and (25). We

therefore have a time-independent wave function 	[h

ij

].

The time independence of the wave function 	[h

ij

] seems strange, until one remembers

that t is nothing more than an arbitrary labelling system for the collection of 3-manifolds

comprising spacetime. The parameter t has no physical meaning, and so in retrospect it

is not surprising that the Schr�odinger equation tells us nothing about what happens to 	

when t is varied.
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Of course, the absence of any time parameter in the theory is hard to reconcile with

our everyday experience; indeed, this represents one of the most puzzling and profound

problems in quantum gravity and quantum cosmology. There are a variety of approaches.

For example, taking an operational view of time as a physical observable, one might

postulate the existence of a operator whose eigenvalues correspond to the time shown on

a particular clock. However, one is then faced with the di�culty of deciding which clock

should be used; or else, of showing that this choice does not in fact matter [4, 5].

Closely related to the problem of recovering time from the timeless quantum theory

predicted by (27), is the problem of interpreting the wave function 	. In conventional

quantum theory, we know that the integral (over some region in the con�guration space)

of j	j

2

can be interpreted as a probability. This interpretation makes sense for 3 reasons;

� the integral of j	j

2

is real and non-negative, as required for a probability

� the integral of j	j

2

over the whole con�guration space is conserved with respect to

time; hence, the total probability is conserved.

� this interpretation can be been experimentally con�rmed by making numerous mea-

surements of identical systems in a speci�ed quantum state.

Unfortunately, none of these arguments can be applied to the cosmological wave func-

tion 	. In the �rst place, it is not clear how to evaluate the integral of j	j

2

over a region

in con�guration space, as we do not know what measure should be used. In the second

place, even if we agree on a measure, we cannot claim that the integral of j	j

2

is con-

served with respect to time, since the theory is time independent. Thirdly, we can never

experimentally con�rm such an interpretation, as we cannot make numerous independent

measurements on an ensemble of Universes in the same quantum state.

It is therefore not at all clear how we should interpret the cosmological wave function

	, and what it tells us about the Universe. Without such an interpretation, we cannot

reasonably claim to have a meaningful theory.

Another fundamental problem is how to determine which quantum state the Universe

is actually in. This cannot be decided just by looking at the quantum constraints, which

admit an uncountable in�nity of di�erent solutions. To answer this question we need to

�nd compelling physical reasons to impose some kind of boundary condition on the wave

functional 	.

Hartle and Hawking o�ered a very plausible solution by proposing that the Universe

should be in its quantum mechanical ground state, de�ned so that the wave function

gives the quantum amplitude for the spontaneous appearance of a given 3-geometry from

nothing at all [10]. Such an amplitude can be obtained by adding contributions from all

compact Riemannian 4-geometries with no boundary other than the speci�ed 3-geometry;

for this reason, it is called the Hartle-Hawking \no-boundary" state. The idea is extremely

compelling on aesthetic (and perhaps even philosophical) grounds, though in recent years

it has lost some of its initial popularity owing to unresolved technical problems. A rival

proposal by Vilenkin has also attracted wide interest [11].
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To conclude this section, it is useful to illustrate the mathematical structure of the

constraints by studying the quantisation of spatially homogeneous cosmologies. (This is

the mini-superspace approach to quantum cosmology [3, 12].) For example, in this case of

the Bianchi IX model[8, 13], the spatial geometry can be parameterised by an overall scale

factor e

2�

and two anisotropy parameters �

+

and �

�

. The wave function 	(�; �

+

; �

�

)

must then satisfy a single Wheeler-DeWitt equation

c

H	 = 0 which follows from the

classical constraint H = 0; in the coordinate representation, this equation has the form

0 =

�h

2

2

"

@

2

@�

2

�

@

2

@�

2

+

�

@

2

@�

2

�

#

	+ U(�; �

+

; �

�

)	 (28)

where, with a particular choice of factor-ordering, the potential U is given by

U(�; �

+

; �

�

) =

1

6

e

4�

h

2e

4�

+

[cosh(

p

48�

�

)� 1] + e

�8�

+

� 4e

�2�

+

cosh(

p

12�

�

)

i

: (29)

Clearly, (28) does not look much like the Schr�odinger equation. This makes it problematic

to interpret 	 in the conventional manner.

Note that the Wheeler-DeWitt equation (28) is hyperbolic, with � playing the part

of a time-like coordinate. The same thing happens in the full non-homogeneous theory;

the Wheeler-DeWitt equation at each point in space has the form of a hyperbolic second

order equation, with the local scale factor acting as a timelike coordinate.

In the full quantum theory, the momentum constraints

c

H

i

	 = 0 ensure that the wave

function is una�ected by spatial di�eomorphisms; that is, by rede�nitions of the spatial

coordinates x

i

. However, these constraints are absent in the reduced homogeneous model

parameterised by (�; �

+

; �

�

) as there is no remaining freedom in the choice of coordinates.

Consequently, the only requirement on the wave function 	 is that it should satisfy the

Wheeler-DeWitt equation (28).

However, we are still a long way from a meaningful quantum mechanical description

of a Bianchi IX Universe! It is not at all clear from equation (28) what 	 actually means,

and there does not appear to be any role for a time variable. Moreover, we have yet to

determine which of the in�nitely many solutions of (28) would be suitable for describing

a Universe such as ours.

4. Canonically Quantised Supergravity

The problems outlined above have been debated for decades, without any conclusive

solutions being found. However, in the last few years, new life has been breathed into

the subject by the observation that mathematical structure of the quantum theory can

be simpli�ed by the introduction of supersymmetry into the model [14, 15, 16, 17, 18].

This simpli�cation occurs because supersymmetry is more fundamental than invariance

under time reparameterisation, in the sense that the generator of time translations can

be expressed as the anticommutator of supersymmetry generators. It is therefore natural

to hope that supersymmetry might should shed new light on some of the old problems.
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Roughly speaking, a supersymmetric theory is one with a symmetry group which

includes spacetime di�eomorphisms and transformations which mix bosonic and fermionic

degrees of freedom. The elegance of supersymmetry lies in the way in which it ties the

bose-fermi symmetries together with the spacetime symmetries.

A theory incorporating both supersymmetry and general relativity is referred to as a

supergravity model. Such models were studied intensively during the late seventies and

early eighties[19, 20] in the hope that one could be made to accommodate all the known

fundamental interactions within a mathematically consistent framework. Although no

such model was found, it is still widely expected that supersymmetry in some form or other

(such as superstrings) should play a role in any satisfactory Theory of Everything. (This

is certainly my point of view.) This provides an important motivation for investigating

the consequences of supersymmetry in quantum cosmology.

In the absence of any more realistic supersymmetric theory incorporating General

Relativity, it is natural to start by considering the canonical quantisation of the simplest

such model; pure N = 1 supergravity [20]. A thorough analysis of the canonical theory

was given by D'Eath in 1984 [21], and a very brief summary of this work is given below.

The most important manifestation of supersymmetry in the canonical theory is the

appearance of 10 new constraints at each point x, in addition to those which arise in

ordinary general relativity. Six of these are the angular momentum constraints, which

have the form

J

ab

(x) = 0 (30)

where a; b = 0; 1; 2; 3 are Lorentz indices and J

ab

(x) = J

[ab]

(x) are the generators of local

Lorentz rotations. These simply express the Lorentz invariance of the theory. The other

four new constraints re
ect the invariance of the theory under supersymmetry transfor-

mations, and have the form

S

A

(x) = 0;

�

S

A

0

(x) = 0 (31)

where A;A

0

= 0; 1 are two-component spinor indices, and S

A

(x);

�

S

A

0

(x) are the generators

of local supersymmetry transformations.

The algebraic structure of the canonical theory is described by listing the Dirac brack-

ets between the various constraints [21]. (The \Dirac bracket" is a generalisation of the

familiar Poisson bracket, having essentially the same properties but taking account of the

fact that the fermion �elds and their conjugate momenta are not independent [9, 22].)

One �nds that the Dirac bracket of any two constraints in canonical supergravity is itself

a linear combination of constraints; hence the set of constraints closes under action of the

Dirac bracket and forms what is called the \Dirac algebra" of the theory.

Of particular interest is the Dirac bracket of the supersymmetry constraints S

A

(x) and

S

A

0

(x), which turns out to be a linear combination of the Lorentz constraints J

ab

(x) and

the Hamiltonian and momentum constraints H(x) and H

i

(x). This relation is the origin

of the intriguing interpretation of supergravity as the square root of general relativity.

The importance of the Dirac bracket relations become clear when one goes to the

quantum theory, in which the Dirac bracket of two variables is replaced by the commutator
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or anticommutator of the corresponding operators (depending on whether the variables

are bosonic or fermionic). In particular, the Dirac bracket relation between S

A

and S

A

0

is replaced by the anticommutation relation

b

S

A

b

�

S

A

0

+

b

�

S

A

0

b

S

A

= linear combination of

b

J

ab

,

c

H and

c

H

i

: (32)

Hence, if the wave function 	 satis�es the 6 Lorentz constraints

b

J

ab

(x)	 = 0 (33)

at each point x as well as the 4 supersymmetry constraints

b

S

A

(x)	 = 0;

b

�

S

A

0

(x)	 = 0; (34)

then it will automatically satisfy the remaining constraints

c

H(x)	 = 0 ;

c

H

i

(x)	 (35)

everywhere in �. (To see this, one simply notes that 	 is annihilated by the operator on

the left-hand side of (32) and hence also by the operator on the right-hand side, for all

values of A;A

0

= 0; 1.) We are therefore able to entirely forget about the Hamiltonian

and momentum constraints, provided that the wave function 	 is Lorentz invariant and

is annihilated the supersymmetry generators

b

S

A

and

b

�

S

A

0

.

The advantage of this approach is that the operators

b

S

A

and

b

�

S

A

0

are much simpler

in form than

c

H and

c

H

i

. In particular,

c

H is second-order whereas

b

S

A

and

b

�

S

A

0

have the

relatively simple �rst-order form (ignoring all indices)

b

S =

�

 �

�

�e

+ (r�

�

 )

b

�

S =  �

�

�e

� (r�  ) (36)

where e is short for e

a

i

(x) and denotes the spatial part of the tetrad (de�ned so that

�

ab

e

a

i

e

b

j

= h

ij

), while

�

 and  respectively are abbreviations for the fermion creation

operators

�

 

A

0

i

(x) and annihilation operators  

A

i

(x).

The nature of the supersymmetry constraints can be illuminated by restricting 	 to

spatially homogeneous �elds and Bianchi type-IX metrics. The independence of the �elds

on the spatial coordinates means that in this case there are only four supersymmetry

constraints,

b

S

A

	 = 0; A = 0; 1;

b

S

A

0

	 = 0; A

0

= 0; 1: (37)

Each of these can be written in the Dirac form

0 = (�

m

@

m

+ �)	 (38)

where X

m

are coordinates on the 12-dimensional con�guration space also parameterised

by e

a

i

, while �

m

and � are complex 64 � 64 matrices. In fact these constraints can be

viewed as square roots of the Wheeler-DeWitt equation (28), in precisely the same way

that the conventional Dirac equation is the square root of the Klein-Gordon equation.
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In fact it turns out that there are two distinct ways of imposing homogeneity on the

Rarita-Schwinger �elds  

A

i

;

�

 

A

0

i

, and that the form of the matrix � depends on which

choice we make [23]. Consequently there are two di�erent versions of the supersymmetry

constraints (37), one for each of the two permissible homogeneity conditions.

Because the constraints are matrix equations, the wave function 	 will have 64 inde-

pendent components. In fact, the di�erent components (	

1

;	

2

; : : :	

64

) can be grouped

according to fermion number. The number of components with given fermion number are

as follows;

Fermion number N

F

: 0 1 2 3 4 5 6

No. of components of 	: 1 6 15 20 15 6 1

The components with a given fermion number together carry a representation of the

Lorentz group, and can be labelled with N

F

spinor indices (A

0

; B

0

; : : :) and N

F

spatial

indices (i; j; : : :). For example, the N

F

= 0 component of the wave function is a scalar

while the N

F

= 1 components together make up a left-handed spinor 1-form 	

A

0

i

.

It is immediately apparent that components of the wave function with odd fermion

number cannot satisfy the Lorentz constraints, since anything with an unsaturated spinor

index cannot be Lorentz invariant. Indeed, it would appear that the only components of

	 which can satisfy the Lorentz constraints are those represented by either a scalar or a

pseudoscalar; i.e. the N

F

= 0 and N

F

= 6 components. (This argument was widely used

and accepted [16, 17], but turns out to be incorrect. Nonetheless, let us follow it to its

conclusion.)

Once we have settled on a choice of homogeneity condition (and so determined the

form of the matrix �), it turns out that there is a single solution to the supersymmetry

constraints withN

F

= 0; there is also just one solution withN

F

= 6. However, one of these

two solutions is found to be non-normalisable. The argument above therefore suggests

that, for a particular choice of homogeneity condition, there is a single normalisable

solution to the Lorentz and supersymmetry constraints.

We thus obtain just two independent solutions, one for each permissible homogeneity

conditon. Remarkably, it turns out [23] that one of these solutions can be identi�ed as

the wave function for the Hartle-Hawking \no-boundary" state discussed earlier [10]. The

other solution [16] is the wave function for the \wormhole ground state", and gives the

amplitude for the appearance of a closed Universe connected by a \wormhole" or throat

to an asymptotically 
at spacetime region [24]. However, the latter is not believed to be

appropriate for describing the quantum mechanics of an expanding pseudo-Riemannian

Universe such as ours. One is therefore drawn to the conclusion that the only cosmological

quantum state permitted in homogeneous Bianchi IX supergravity is the Hartle-Hawking

state.

The idea that supersymmetry might single out a special quantum state for the Uni-

verse caused considerable excitement in the early 1990's (among a fairly small group,

admittedly!) However this excitement dissolved at the end of 1994, when Csord�as and

Graham showed that the arguments leading to this remarkable conclusion were incorrect,
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being based on a misunderstanding of the Lorentz constraints [25]. (The argument given

above neglected the existence of an invariant tensor characterising the algebraic structure

of the homogeneous spatial geometry. This tensor can be contracted with the free indices

on certain components of 	 to give Lorentz invariant solutions with fermion numbers

N

F

= 2 and N

F

= 4.) Csord�as and Graham demonstrated that, when the calculation is

done correctly, the N

F

= 2 and N

F

= 4 sectors actually contain in�nitely many Lorentz

invariant solutions to the supersymmetry constraints. One thus returns to the old problem

of being unable to decide which solution to choose!

5. Quantum Supergravity and Time

We saw in the last section that, in spite of its initial promise, supersymmetry does not

appear to determine the quantum state of the Universe. It remains to see whether it

can help solve the other fundamental problems in quantum cosmology; in particular, the

algebraic connection between supersymmetry and time translation leaves us with the hope

that it might shed light on the Problem of Time.

I will conclude with a brief outline of some work completed recently with Robert

Graham [26, 27], showing how a cosmological time parameter arises naturally from the

canonical quantisation of an elegant version of supergravity proposed by Ogievetsky and

Sokatchev [28, 29]. We will see that the evolution of the wave function with respect to

this time parameter is governed a set of Schr�odinger equations, and can be interpreted in

a very conventional way.

This work originated from an attempt to supersymmetrise the unimodular version of

general relativity, obtained by varying the Einstein-Hilbert (1) action with the determi-

nant of the metric �xed to be one [30, 31, 32]. Canonical quantisation of this theory shows

that the wave function evolves with respect to t according to a type of Schr�odinger equa-

tion [31]; however, the theory is somewhat unsatisfactory because the justi�cation for the

unimodular condition is unclear. By starting with the Ogievetsky-Sokatchev formulation

of supergravity, we were able to obtain a similar result without the imposition of ad hoc

conditions on the �elds.

Conventional N=1 supergravity can be derived from a super�eld theory by carefully

imposing a variety of gauge conditions and making suitable transformations. The La-

grangian density for this theory is found to be eL, where e denotes the determinant of

the vielbein e

a

�

, and

L =

1

2

R +

1

2

�

����

(

�

 

�

��

�

D

�

 

�

�  

�

�

�

D

�

�

 

�

) +

1

3

b

�

b

�

�

1

3

M

�

M � �

�

(M +  

a

�

ab

 

b

)� �(M

�

+

�

 

a

��

ab

�

 

b

); (39)

� is an arbitrary complex constant, b

�

is an auxiliary (i.e. non-propagating) vector �eld,

and M is a complex auxiliary scalar �eld [20]. The (non-dynamical) �eld equations for

M imply that M = �3�; using this to eliminateM , the above expression reduces to

L =

1

2

R +

1

2

�

����

(

�

 

�

��

�

D

�

 

�

�  

�

�

�

D

�

�

 

�

) +

1

3

b

�

b

�
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+3�

�

� � �

�

 

a

�

ab

 

b

� �

�

 

a

��

ab

�

 

b

: (40)

This gives rise to a theory in which the Rarita-Schwinger �eld has mass m = j�j, with

cosmological constant � = �3m

2

.

However there is an alternative derivation of N = 1 supergravity from a super�eld

theory due to Ogievetsky and Sokatchev, which in many ways is simpler and more elegant

[28, 29]. The resulting theory is almost identical to the conventional version described

above, but there is one subtle di�erence; instead of being an independent scalar �eld, M

is given by

M = r

�

M

�

�  

a

�

ab

 

b

(41)

where now the complex vector �eldM

�

must be independently varied. Requiring L to be

stationary with respect to this variation leads to the �eld equation

0 = @

�

(r

�

M

�

�  

a

�

ab

 

b

) = @

�

M (42)

(rather than M = �3�, as in the usual approach). Thus, M will be constant on-shell,

but does not have to take any particular value.

Another consequence of the identity (41) is that the terms involving the constants

�; �

�

in expression (39) become total derivatives, and so can be neglected. Thus, � and

�

�

are completely eliminated from the Ogievetsky-Sokatchev theory. In this formulation,

the Rarita-Schwinger mass m and the cosmological constant � are determined instead by

the unspeci�ed but constant quantity M ; one has

m =

1

3

jM j and � = �

1

3

jM j

2

: (43)

In other words, m and � appear as dynamical quantities which are only constant by

virtue of the �eld equations. This makes no di�erence in the classical theory, as we can give

m or � any values we desire by imposing suitable initial conditions on M . However, the

quantum theory is radically changed, as it is now possible to consider linear superpositions

of states with di�erent values of m or �.

To explore the consequences of this new feature, we now consider the canonical quan-

tisation of the Ogievetsky-Sokatchev theory. If �elds �(x) and �(x) are de�ned so that

M =

p

�3�e

i�

(44)

then we �nd that the canonical description of the classical theory includes the following

�rst-class constraints at each point x:

h

�

1

2

H = ���

2

3

h

�

1

2

h

ij

e

ja

n

b

( 

i

�

ab

S +

�

 

i

��

ab

�

S) (45)

H

i

= �

1

3

( 

i

S +

�

 

i

�

S)�

1

3

e

ic

h

jk

e

ka

( 

i

�

ac

S +

�

 

i

��

ac

�

S) (46)

S

A

= 2(��=3)

1=2

h

1

2

e

i�

n

a

h

ij

e

jb

(�

ab

 

i

)

A

(47)

�

S

A

0

= 2(��=3)

1=2

h

1

2

e

�i�

n

a

h

ij

e

jb

(��

ab

�

 

i

)

A

0

(48)
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J

ab

= 0 (49)

@

i

� = 0 (50)

@

i

� = 0 (51)

where h = det[h

ij

] and the quantities H, H

i

, S

A

,

�

S

A

0

, and J

ab

are de�ned precisely

as in the conventional theory [21]. The constraints involving these quantities are just

modi�ed versions of those appearing in conventional supergravity. On the other hand,

the constraints (50,51) are new; these imply that the �elds � and � can be viewed as

functions only of the time coordinate t.

In fact, by making a canonical transformation one can show that dynamical variables

�(t) and �(t) can be viewed as the momenta conjugate to the new dynamical variables

T (t) = �

1

6�

Z

�(t)

d

3

x e(M

�

M

t

+MM

t�

) (52)

U(t) = �

i

3

Z

�(t)

d

3

x e(M

�

M

t

�MM

t�

) (53)

whereM

t

is the timelike component of the complex vector �eldM

�

. Hence, when we go to

the quantum theory, the momentum operator

b

� can be written (in the T -representation)

as

b

� = �i�h

@

@T

(54)

in which case the Hamiltonian constraint (45) becomes

i�h

@	

@T

= h

�

1

2

[H+

2

3

h

ij

e

ja

n

b

( 

i

�

ab

S +

�

 

i

��

ab

�

S)]	 (55)

at each spacetime point x.

Clearly this can be viewed as a type of Schr�odinger equation if we are prepared to

think of T as a time parameter. At �rst sight this seems implausible; however, on closer

inspection, one �nds that T does indeed behave suitably. At least, it does in a particular

supersymmetry gauge in which  

t

(the non-dynamical part of the Rarita-Schwinger �eld)

is constrained to satisfy the gauge condition

 

t

A

=

2

3

Nh

mn

e

ma

n

b

 

n

B

�

ab

B

A

+

1

3

N

m

 

m

A

+

1

3

N

m

e

mc

h

`n

e

na

 

`

A

(56)

In this gauge, one has the identity

 

a

�

ab

 

b

= 0 (57)

and the �eld equations imply that T is a monotonically increasing function of the time

coordinate t; in fact, up to an additive constant, T (t) is simply the four-volume of space-

time preceding the spacelike hypersurface �(t) on which the time coordinate t takes the

speci�ed value. We are therefore justi�ed in viewing T as a bona �de time parameter; i.e.

a satisfactory labelling system for a prespeci�ed foliation of spacetime by non-intersecting

spacelike hypersurfaces.
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Note that it is now meaningful to talk about the conservation of probability with

respect to the time parameter T . Indeed, if we choose an operator ordering so that

c

H,

c

H

i

are self-adjoint and

b

S

A

,

b

�

S

A

0

are mutually adjoint with respect to some chosen measure

on the con�guration space, then the integral of 	

�

	 on this space is a conserved quantity

thanks to (55). Moreover, 	

�

	 is positive and real, and so is naturally interpreted as

a probability density function on the con�guration space (precisely as in conventional

quantum mechanics).

In summary, therefore, it appears that canonical quantisation of the Ogievetsky-

Sokatchev formulation of supergravity leads naturally to a time-dependent quantum the-

ory in which the wave function has a very conventional interpretation. While the simplicity

of the argument is rather surprising, it also appears inescapable if one starts with this

particular version of supergravity. Moreover, it suggests that the argument can probably

be extended to much more general supersymmetric models.

References

[1] G. Esposito, Quantum Gravity, Quantum Cosmology and Lorentzian Geometries

(Springer-Verlag, 1993)

[2] J.A. Wheeler, in Batelles Rencontres, edited by C. DeWitt and J.A. Wheeler (Ben-

jamin, New York 1968)

[3] B.S. DeWitt, Phys. Rev. D160, 1113 (1967)

[4] C.J. Isham, Canonical Quantum Gravity and the Problem of Time, Lectures pre-

sented at the NATO Advanced Study Institute \Recent Problems in Mathematical

Physics", Salamanca 1992. (Imperial College preprint TP/91-92/25)

[5] K. Kucha�r, in Proceedings of the 4th Canadian Conference on General Relativity and

Relativistic Astrophyics, edited by G. Kunstatter, D. Vincent and J. Williams (World

Scienti�c, Singapore 1992)

[6] C. Rovelli & L. Smolin, Phys. Rev. Lett. 61 1155 (1988); Nucl. Phys. B 331 80 (1990)

[7] A. Ashtekar, Lectures on Non-Perturbative Canonical Gravity (World Scienti�c, Sin-

gapore 1991)

[8] C.W. Misner, K.S.Thorne and J.A.Wheeler, Gravitation (Freeman, 1973)

[9] P.A.M. Dirac, Lectures on Quantum Mechanics (Academic, New York 1965)

[10] J.B. Hartle & S.W. Hawking, Phys. Rev. D28 2960 (1983)

[11] A. Vilenkin, Phys. Rev. D33 3560 (1986)

[12] C.W. Misner, in \Magic without Magic", edited by J. Klauder (Freeman, San Fran-

cisco 1972)



190 H. LUCKOCK

[13] M.P. Ryan & L.C. Shepley, Homogeneous Relativistic Cosmologies (Princeton Uni-

versity, New Jersey 1975)

[14] R. Graham, Phys. Rev. Lett. 67 1381 (1991) ; Phys. Lett. 277B 393 (1992)

[15] P.D. D'Eath, S.W. Hawking & O. Obr�egon, Phys. Lett. 300B 44 (1993)

[16] P.D. D'Eath, Phys. Rev. D48, 713 (1993)

[17] M. Asano, M. Tanimoto & N. Yoshino, Phys. Lett. 314B 303 (1993)

[18] J. Bene & R. Graham, Phys. Rev. D 49 799 (1994)

[19] P. van Nieuwenhuizen, Physics Reports 68 No. 4 (1981)

[20] J. Wess & J. Bagger, Supersymmetry and Supergravity (2nd Edition) (Princeton

University Press 1992)

[21] P.D. D'Eath, Phys. Rev. D29 2199 (1984)

[22] R. Casalbuoni, Nuovo Cimento 33A 115 (1976)

[23] R. Graham & H. Luckock, Phys. Rev. D 49 R4981 (1994)

[24] S.W. Hawking & Page, Phys. Rev. D 42 2655 (1990)

[25] A. Csord�as & R. Graham, Phys. Rev. Lett. 74 4129 (1995)

[26] R. Graham & H. Luckock, Cosmological Time in Quantum Supergravity (gr-

qc/9603054)

[27] R. Graham & H. Luckock, in preparation

[28] V. I. Ogievetsky & E. S. Sokatchev, Sov. J. Nucl. Phys. 31 140 (1980)

[29] V. I. Ogievetsky & E. S. Sokatchev, Sov. J. Nucl. Phys. 32 589 (1981)

[30] M. Henneaux & C. Teitelboim, Phys. Lett. B222 195 (1989)

[31] W. G. Unruh, Phys Rev D40 1048 (1989)

[32] W.G. Unruh & R.M. Wald Phys Rev D40 2598 (1989)


