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Abstract

The spectral methods which are being used to solve Einstein's equations in

null quasi-spherical coordinates are described. They include Fast Fourier methods

for evaluating derivatives in a uniform grid representation and methods for trans-

forming to and from spin-weighted spherical harmonic representations. In theory,

expressions involving spherical harmonics up to any �xed maximum angular momen-

tum L can be routinely manipulated with accuracy depending only on the machine

precision. The code we have running uses L = 15 or L = 31; with no assumed

symmetries.

1. Introduction

The structure of Einstein's equations in null quasi-spherical (NQS) coordinates has been

discussed in [1], these proceedings. Recall that NQS coordinates fz; r; #; 'g satisfy the

following conditions:

(1) The 3-surfaces z = const: are null.

(2) The 2-surfaces z = const:; r = const: are metric 2-spheres of area 4�r:

(3) f#;'g are standard polar coordinates on these 2-spheres.

Because NQS coordinates foliate space-time by metric 2-spheres, Einstein's equations

are naturally expressed in terms of spin-weighted functions on S

2

and the covariant dif-

ferential operator edth [2], given by
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for � of spin weight s:

Spectral collocation using spin-weighted spherical harmonics as basis functions then

presents itself as a natural choice of numerical method for solving Einstein's equations in

NQS coordinates.

�
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This paper describes how expressions such as (1) can be evaluated using fast Fourier

methods and how one can e�ciently transform between representations of a spin-weighted

function in terms of its spherical harmonic components and the values it takes on a regular

grid of collocation points on S

2

:

2. The NQS solution algorithm

The central role played by the spectral techniques to be described is best illustrated by

brie
y reviewing the algorithm being used to solve the characteristic initial value problem

(CIVP) in NQS coordinates.

In the CIVP we are given a spin 1 �eld � as initial data on a null surface z = const:

Numerical solution of Einstein's equations amounts to evolving � from one z = const:

slice to the next. This involves 3 steps:

Step 1

On the null z = const: slice one solves for four auxiliary �elds, H; Q

�

; J and K: These

�elds (which are de�ned in [1]) are of spins 0,1,0 and 2 respectively, and will be denoted

here collectively as y

i

; i = 1; : : : ; 6 (Q

�

and K have both real and imaginary parts). The

system of PDEs to be solved is then of the form

@y

i

@r

= f

i

(r; #; '; @y

i

=@#; @y

i

=@') ; (2)

where the f

i

depend on r; #; ' both explicitly and through the �eld � and its 1st and

2nd covariant angular derivatives (terms such as div � and @~curl�).

These PDEs are solved by spectral collocation [3] using an explicit integration scheme.

For �xed radius r; the �elds y

i

are represented by the values they take on a collocation

grid on S

2

: The S

2

grid is equally spaced in the polar angles # and '; and is typically of

size 16� 32 or 32� 64; with the poles (# = 0; �) being midway between grid points. Note

that the spatial resolutions in the # and ' directions are equal at the equator for a grid

of shape N=2 �N:

The derivatives @y=@# and @y=@' are evaluated on the S

2

grid using Fast Fourier

Transforms (FFTs). One simply multiplies the Fourier coe�cients of y by the appropriate

wavenumber and then transforms back to obtain the grid values of the derivatives of y:

The only complication is that taking the FFTs in the # direction involves some care, as

described in Section 3.

Once the values of the derivatives of y have been found, the functions f

i

can be

evaluated at the S

2

grid points. Equations (2) can then be integrated as a large system

of 3N

2

ODEs. At present a 4th order Runge-Kutta (RK4) method is being used, starting

with prescribed initial data for y

i

on a 2-sphere of non-zero radius.

Using an appropriately scaled radial grid, equations (2) can be integrated out to r =1:

Typically the radial grid has 128, 256 or 512 steps.
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Step 2

On the null z = const: slice one then solves for a spin 1 �eld 
: The equation for 
 is

@~
 + div 


@~�

2 � div�

= �K + J

@~�

2� div �

: (3)

The source terms on the RHS are given by the solutions obtained in Step 1.

For �xed radius and � not too large, (3) is an elliptic equation on S

2

: So we solve for 


on the null slice by solving, at each grid radius, an elliptic equation for gamma restricted

to S

2

:

The operator on the LHS of (3) has a 6 dimensional kernel corresponding to the 6

spherical harmonic components of 
 having ` = 1; m = 0;�1: Choosing to set these

components of 
 to zero partially �xes the gauge freedom in the NQS coordinate system

and enables us to change the independent variable from 
 to � using 
 = @~

�1

� (with @~

�1

now well de�ned). Equation (3) then becomes,

� + div (@~

�1

�)

@~�

2 � div�

= �K + J

@~�

2� div �

: (4)

The advantage of (4) over (3) is that the operator in (4) is close to the identity. The

corresponding discretised problem is therefore well suited to iterative matrix methods.

We use the conjugate gradient (CG) method, which is an iterative method applicable

to matrix problems of the formAx = b withA symmetric positive de�nite. Accordingly we

actually solve an associated self-adjoint equation obtained by applying to (4) the operator

adjoint to that in (4) with respect to the L

2

norm on S

2

:

Implementation of the above scheme requires several transformations between repre-

sentations of �elds by their spin-weighted spherical harmonic coe�cients and by their

values on the S

2

grid. For example, the operator @~

�1

is a trivial multiplicative opera-

tor on spectral coe�cients, whereas the source terms are given in terms of grid values.

Moreover, several products have to be calculated in the grid representation.

Using the CG method to solve for the spin 2 spherical harmonic coe�cients of �

turns out to be extremely e�cient, typically requiring fewer than 10 iterations of the CG

algorithm for an S

2

grid of size N=2 � N = 16 � 32: On this size grid we resolve all

components of � up to angular momentum ` = N=2 � 1 = 15; so in this case we are

solving for 2((` + 1)

2

� 4) = 504 spectral coe�cients.

The scheme's e�ectiveness is in part due to having a good initial guess for 
 to use as

the starting point of the CG iterations, namely the solution found for � on the 2-sphere

at the previous radial position.

Step 3

The �eld � is evolved to the next z = const: slice by numerical integration of an expression

for @�=@z which involves the �elds y

i

; 
 and @
=@r:The radial derivative of 
 is calculated

numerically using spline methods [4].
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The results reported in the talk accompanying paper [1] were obtained using explicit

RK4 integration of @�=@z: Other methods remain to be investigated and the relations

between maximum stable step size �z and the angular and radial resolutions are still to

be determined.

Transformations between spherical harmonic and S

2

grid representations are necessary

in Step 3 because of the potential for instabilities of the z integration to develop near the

poles of the coordinate system. In the following sections we shall see that the number of

degrees of freedom in the grid representation is at least twice that of the corresponding

spherical harmonic representation (by corresponding we mean only involving basis func-

tions which do not alias on the S

2

grid). It follows that a transformation from the grid

representation to the spherical harmonic representation actually involves a projection.

This projection may be viewed as an S

2

-spectral �lter.

If a �eld is evolved in the grid value representation without periodic �ltering to remove

numerical noise, then the numerical solution can eventually fall apart at the poles because

it has too many degrees of freedom.

3. FFT evaluation of angular derivatives

The S

2

grid is uniform in # and ' so that FFT methods can be used to evaluate the #

and ' derivatives of a spin s �eld. For integer s the real and imaginary parts of a spin

s �eld on S

2

are (up to a factor) equal to the two independent frame components of a

completely symmetric tensor on S

2

[2]. These components may be discontinuous at the

poles, so are not obviously suited to Fourier expansion in the # direction.

The standard orthonormal frame on S

2

is (e

1

; e

2

) = (@=@#;

1

sin#

@=@'); with # 2 [0; �]

and ' 2 [0; 2�): Let T = T

j

1

:::j

s

e

j

1


 � � � 
 e

j

s

be a smooth tensor �eld on S

2

: As one

crosses through either of the poles both of the basis vectors e

1

and e

2

reverse direction,

so if the number of factors in e

j

1


 � � � 
 e

j

s

is odd then the component functions T

j

1

:::j

s

must change sign across the poles.

To Fourier transform T

j

1

:::j

s

in the # direction we �rst extend the domain of de�nition

of T

j

1

:::j

s

to # 2 [��; �] in such a way that the resulting functions are smooth and of

period 2� in #: Using the 2� periodicity in '; we de�ne

T

j

1

:::j

s

(�#;') = (�1)

s

T

j

1

:::j

s

(#;'+ �) ; # 2 [0; �]: (5)

Derivatives of T

j

1

:::j

s

with respect to # can then be calculated just as for ' derivatives,

with the proviso that the direction of increasing # be properly taken into account.

The procedure just described extends the functions T

j

1

:::j

s

so as to be de�ned on the

torus S

1

� S

1

: In Section 4 we shall see that this is a useful interpretation of equation

(5). Alternatively, one can view the same equation as simply the transformation law for

components with respect to two di�erent S

2

coordinate charts, one based on circles of

latitude and one based on circles of longitude.

There remains the question of how the calculated FFT derivatives relate to those one

would calculate using a spin-weighted spherical harmonic expansion of T:
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We use a real basis of spin 0 spherical harmonics so that the even and odd parity

components of a spin s �eld are easily distinguished (for s = 1 the even/odd decomposition

is just the Helmholtz decomposition of a vector �eld into div-free and curl-free parts).

Accordingly, let

F

m

(') =

8

>

<

>

:

1 m = 0

p

2 cosm' m > 0

p

2 sin jmj' m < 0

(6)

then the spin 0 basis we use is

0

Y

`m

= P

`m

(#)F

m

(') ; (7)

where ` = 0; : : : ; L and m = �`; : : : ; `: The functions P

`m

(#) = P

`jmj

(#) are related to

the associated Legendre functions P

`m

; by

P

`m

(#) = (�1)

m

p

2` + 1

(` �m)!

(` +m)!

P

`m

(cos#) : (8)

The associated Legendre functions with argument cos # are,

P

`m

(cos #) =

(�1)

m

2

`

`!

sin

m

#

"

d

`+m

dx

l+m

(x

2

� 1)

`

#

x=cos#

: (9)

Basis functions for spin s > 0 �elds of even and odd parity are then given by

s

Y

`m

and

i

s

Y

`m

respectively (using real coe�cients), where

s

Y

`m

=

�

p

2

q

(` + s)(l� s� 1)

@~

s�1

Y

`m

;

with ` = s; s+1; : : : ; L and m = �`; : : : ; `: The spin-weighted spherical harmonics f

s

Y

`m

g

are orthonormal with respect to the Hilbert norm on S

2

;

1

4�

Z

S

2

s

Y

`

1

m

1

s

Y

`

2

m

2

sin#d#d' = �

`

1

`

2

�

m

1

m

2

; s = 0; 1; : : :

From (6){(9) it is evident that the spin 0 harmonics

0

Y

`m

; are trigonometric polyno-

mials in # and ': Using expression (1) for @~; one can show that the

s

Y

`m

are likewise

trigonometric polynomials, and can therefore be expressed as Fourier sums.

The highest wave number Fourier modes which occur in the set of basis functions

f

s

Y

`m

: s � ` � Lg are cos(L#); sin(L#); cos(L'); and sin(L'): Therefore, on an S

2

grid

of size N=2�N the Fourier derivatives of

s

Y

`m

are algebraically exact for ` � L = N=2�1:

Moreover, it is clear that amongst uniform S

2

grids, a grid of shape N=2�N is optimal in

terms of the number of spherical harmonics which can be represented on the grid without

aliasing.

Because the Fourier derivatives of

s

Y

`m

are algebraically exact, the accuracy of FFT

methods for evaluating expressions such as (1) depends only on the machine precision.
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For example, the Laplacian of

0

Y

`m

can be computed numerically using FFT methods

and then compared with the exact result. Using double precision on a DEC Alpha it is

found that for N = 32 we have max(�

0

Y

`m

=`(` + 1) +

0

Y

`m

) < 2 � 10

�12

for all jmj � `

and ` � 15; where the maximum is taken over the S

2

grid points. For N = 64 we have

max(�

0

Y

`m

=`(` + 1) +

0

Y

`m

) < 4� 10

�11

for all jmj � ` and ` � 31:

4. Projecting from grid to spherical harmonic representations

Projections for �elds of spin 0, 1 and 2 are required for the steps outlined in Section 2.

Only that for the spin 0 case is described here, those for higher spins being completely

analogous.

The number of basis functions in the set f

0

Y

`m

: 0 � ` � Lg is (L + 1)

2

: However, to

represent these functions on a regular S

2

grid we require a grid of size (L+1)� 2(L+1):

The spin 0 functions of angular momentum of at most L therefore form a subspace of

dimension (L+1)

2

in a Fourier space of dimension 4(L+1)

2

:We shall construct a projection

onto this subspace which is orthogonal with respect to the natural inner product in the

Fourier space,

hf

1

; f

2

i =

1

4�

2

Z

2�

0

Z

2�

0

f

1

(#;')f

2

(#;')d#d' (10)

=

1

N

2

N

X

i=1

N

X

j=1

f

1

(#

i

; '

j

)f

2

(#

i

; '

j

) ; (11)

where f(#

i

; '

j

) : i; j = 1; : : : ; Ng are grid points and N = 2(L+ 1):

To make use of (11) we use (5) to extend functions de�ned on S

2

to functions de�ned on

the torus T

2

= S

1

�S

1

: In particular, given any set of values ff

ij

2 R : i = 1; : : : ; N=2; j =

1; : : : ; Ng on the S

2

grid, we use (5) to extend this to a set of grid values on T

2

: There

is then a unique interpolating trigonometric polynomial f such that f(#

i

; '

j

) = f

ij

: We

project f to the spin 0 subspace as follows.

The basis vectors for the spin 0 subspace are the

0

Y

`m

: These vectors are not orthonor-

mal with respect to (10). In fact, the metric induced on the spin 0 subspace by that of

the Fourier space is given by

G

`m `

0

m

0

= h

0

Y

`m

;

0

Y

`

0

m

0

i

= hP

`m

(#); P

`

0

m

0

(#)ihF

m

('); F

m

0

(')i

= hP

`m

(#); P

`

0

m

(#)i �

mm

0

: (12)

Here, the index pair `m (and `

0

m

0

) is to be regarded as a combined index which takes

(L+1)

2

values. Moreover, the summation convention will be employed for repeated indices

which appear both raised and lowered in the one term.

For �xed m; the inner product (12) of the P functions forms a matrix which we denote

as

A

(m)``

0
= hP

`m

(#); P

`

0

m

(#)i :
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These matrices are de�ned only for jmj � ` � L and jmj � `

0

� L; so are square and of

size (L + 1 � jmj) � (L + 1 � jmj): Let the inverse matrix be denoted A

``

0

(m)

: Then (12)

becomes

G

`m `

0

m

0

= A

(m)``

0

�

mm

0

; (13)

and the components of the inverse metric are given by

G

`m `

0

m

0

= A

``

0

(m)

�

mm

0

; (no sum on m): (14)

The dual basis vectors for the spin 0 subspace are

0

Y

`m

= G

`m `

0

m

0

0

Y

`

0

m

0

; (15)

and satisfy

h

0

Y

`m

;

0

Y

`

0

m

0

i = �

`

0

`

�

m

0

m

:

The orthogonal projection of f onto the spin 0 subspace is then obtained as

proj(f) = hf;

0

Y

`m

i

0

Y

`m

:

The numbers

f

`m

= hf;

0

Y

`m

i ; (16)

are the spin 0 spherical harmonic coe�cients (of the projection) of f:

To calculate the inner product (16), �rst note that using (7), (14) and (15) the dual

basis vectors can be written as

0

Y

`m

= P

`m

(#)F

m

(') ; (17)

(in analogy with (7)) where we have set

P

`m

(#) = A

``

0

(m)

P

`

0

m

(#) ; (18)

F

m

(') = F

m

0

(')�

m

0

m

:

By Fourier analysis of f in the ' direction one can write f =

^

f

k

(#)F

k

('): In particular,

by '-FFT of ff

ij

g one obtains the numbers

^

f

k

(#

i

): The spin 0 coe�cients of f can then

be evaluated using (11) and (17) as

f

`m

= h

^

f

k

(#)F

k

('); P

`m

(#)F

m

(')i

= h

^

f

k

(#); P

`m

(#)i �

m

k

= h

^

f

m

(#); P

`m

(#)i

=

1

N

N

X

i=1

^

f

m

(#

i

)P

`m

(#

i

) : (19)

Fortran subroutines for transforming between grid values and spherical harmonic co-

e�cients have been written for maximum angular momentum L = 7; 15 and 31: The grid
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values P

`m

(#

i

) which appear in the sum (19) were pre-computed in multiple precision and

written to �le using REDUCE. The functions P

`m

(#); de�ned by (18), were constructed

symbolically using exact inversion of the matrices A

(m) ``

0

: This symbolic approach was

feasible because the metric G

`m `

0

m

0

factorised as the tensor product (13), thus allow-

ing exact inversion of G using matrices of size at most (L + 1) � (L + 1) rather than

(L+ 1)

2

� (L+ 1)

2

:

The analysis of spin 1 and spin 2 grid functions into spherical harmonic coe�cients is in

essence the same as for spin 0, complicated only by the fact that the induced metric on the

subspace factorises as a tensor product only in a complex (mixed parity) basis. Separating

the even and odd parity coe�cients therefore requires some extra book keeping.

Projections for scalar and vector �elds on S

2

(i.e. for spins 0 and 1) have been given

by Swarztrauber in [6],[7],[8]. They di�er from ours in that the metric used is not the

natural Fourier metric (10). However, they have the advantage that simple formulae are

available for the functions analogous to our P

`m

(#):

The synthesis of a spin 0 grid function f

ij

= f(#

i

; '

j

) from its spherical harmonic

coe�cients f

`m

follows from

f = f

`m

0

Y

`m

(#;')

= f

`m

P

`m

(#)F

m

(') :

One �rst forms the quantities

^

f

m

(#

i

) =

L

X

`=jmj

f

`m

P

`m

(#

i

) ; (no sum on m): (20)

and then uses inverse FFTs in the ' direction to obtain

f

ij

=

^

f

m

(#

i

)F

m

('

j

) :

The grid values of the functions P

`m

in (20) were pre-computed in REDUCE. Synthesis

for �elds of spin 1 and 2 is similar to that for a spin 0 �eld.

5. Conclusions

A spectral method has been described for solving the characteristic initial value problem

for Einstein's equations in null quasi-spherical coordinates. The method involves the

use of both Fourier and spherical harmonic expansions of �elds with spin-weights 0,1

and 2. Techniques have been developed for transforming a spin-weighted �eld between

grid and spherical harmonic representations. Fortran subroutines which implement these

techniques have been written for spin-weights 0, 1 and 2.

The code for solving the CIVP is at the stage where preliminary results are now

becoming available. On a DEC Alpha workstation the CPU time required to evolve a

solution from one z = const: slice to the next is about 2 minutes on a 16 � 32 S

2

grid

(L = 15) using 128 radial positions.
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The code has yet to be tested on known NQS exact solutions. Other tests will involve

monitoring those components of the Einstein equations which are not being used to evolve

the solution.
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