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Abstract

In the Relaxed Bondi-Sachs coordinates devised by Fletcher and Lun [1] one of

the �eld equations may be interpreted as a generalisation of the Robinson-Trautman

equation. Accordingly, by extensively investigating the Robinson-Trautman space-

times [2] (whose evolutions are governed by the Robinson-Trautman equation) we

are laying the groundwork for more general evolutions in the characteristic setting

of Numerical Relativity.

We have devised numerical schemes which successfully evolve the axisymmetric

Robinson-Trautman equation using two distinct methods: �nite di�erences and a

spectral method (the latter proves superior). We are presently attempting to match

a dust interior to the vacuum exterior. The �rst step in the matching is to determine

the history of the collapsing surface by following eventually radial time-like geodesics

backwards in retarded time from near the event horizon. We present preliminary

results on the history of the shell of test particles. In general, as the test particles

proceed backwards they acquire a tangential component to their motion.

1. Introduction

The vacuum Robinson-Trautman spacetimes are a class of distorted black holes which

possess a future event horizon and a past apparent horizon [3]. As they evolve these

objects radiate energy in the form of purely outgoing gravitational waves and settle down

to the Schwarzschild solution in the limit of large retarded time [4]. Their evolution is

governed by a single �eld equation, the Robinson-Trautman equation.

With the exception of the steady state (the Schwarzschild solution) and Minkowski

spacetime in Newman-Unti coordinates no exact regular solutions to the Robinson-Trautman

equation are known. However, many strong results about the global behaviour of this

equation have been established: Chru�sciel [5] proved that solutions exist for quite general

initial conditions; Tod [6] demonstrated uniqueness; in the limit of large retarded time

the vacuum Robinson-Trautman spacetime settles down to the Schwarzschild solution;

several conserved and monotonically decreasing (Lyapunov) quantities are known, the

most readily interpretable of which is the Bondi mass. It gives a measure of the total

mass-energy on each null-slice.

Since at large retarded times the vacuum Robinson-Trautman spacetimes settle down

to Schwarzschild, it seems reasonable that generalisations to some of the classic matchings
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of a Schwarzschild exterior to various matter interiors may be possible. The latter part of

this paper describes preliminary work towards matching the vacuum Robinson-Trautman

exterior to a dust interior. If successful, this matching would constitute a direct generali-

sation of the Oppenheimer-Snyder solution, and would correspond to that solution in the

limit of large retarded time. This matching would constitute a numerical solution, rather

than an exact solution.

2. Numerical evolution of the Robinson-Trautman exterior

The line element of the vacuum Robinson-Trautman equation with (+, -, -, -) signature

can be written

ds
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is the standard Laplacian operator on the unit 2-sphere. The only �eld equation

(the Robinson-Trautman equation) is given by
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with initial condition f(0;
) = f

0

(
) > 0. The Robinson-Trautman equation is a fourth-

order, non-linear, parabolic equation.

In an earlier paper [7] the authors described an algorithm for the accurate and e�-

cient numerical evolution of the axisymmetric Robinson-Trautman equation by a spectral

method. (This approach re�ned earlier numerical work of Singleton [8] based on �nite

di�erences.) The full non-axisymmetric case should not present any great di�culties, at

least in principle, but calls for substantially greater computing resources.

A number of strong theoretical results which describe various aspects of the global

behaviour of the Robinson-Trautman equation have been established. For the purposes

of numerical studies the most signi�cant are the conservation of surface area
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The surface area is not exactly conserved in computations, but its change gives a useful

measure of error. The Bondi mass is important for physical interpretation.

One feature of the Robinson-Trautman equation, arising from residual coordinate free-

dom in the description of the two-sphere, is the non-uniqueness of the representation of

f . For instance, the �nal state, which always corresponds to the Schwarzschild solution,

consists of a superposition of the zero and �rst harmonics, i.e.

f

1

(�; �) = A+B cos � + C sin � cos�+D sin � sin� (6)

with A, B, C and D constants subject to a normalisation constraint to ensure that surface

area is 4�, but otherwise unrestricted. In general it is not possible, given arbitrary initial

data, to predict the �nal state; it is necessary to run a numerical evolution. However, the

authors, in collaboration with E W-M Chow [7], have devised a procedure which makes it

possible to rescale arbitrary initial data so that the �nal state consists purely of the zero

harmonic (i.e. A = 1, B = C = D = 0). In the axisymmetric case, where C = D = 0

automatically from the symmetry, the appropriate transformation of the initial data is

given by

~

f

0

(~z) = (A�B~z)f

0

�

A�B~z

B~z �A

�

where z = cos �. To implement this scheme it is appropriate to evolve the data numerically

twice. The �rst run determines the end-state of the original data, yielding A and B. We

could now, in theory, carry out a rescaling at every time-step. However, it is preferable

to re-do the evolution with the rescaled data. Discrepancy from the expected

~

f

1

(~z) = 1

steady-state solution is an excellent measure of error.

Consider, for example, the axisymmetric initial data

f

0

(z) = �(1 + 0:3 z + 0:3 z

2

� 0:2 z

3

� 0:2 z

4

� 0:2 z

5

)

where � is a normalisation constraint which is scaled to ensure that A(0) = 4�. m is set

to 1=12. Numerical evolution shows that the steady state (to four decimal places) is

f

1

(z) = 1:0035 + 0:0842 z

Following rescaling of initial data, and re-evolving, the new �nal state is given by

~

f

1

(~z) = 1 + 1:3 10

�10

~z

In these calculations 30 spectral modes were used and each evolution took 20 seconds on

a DEC Alpha 3000. The error in surface area was 7:6 10

�10

. Figure (1) shows every 10th

time-step of the second evolution. Figure (2) shows the monotonic decay of the Bondi

mass.

Table (1) compares the discrepancy between the �nal state (following re-scaling) and

1 for several di�erent grid resolutions, for both spectral methods and �nite di�erences.
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Figure 1: Evolution of the conformal factor, f(u; z)

Spectral Modes Error Finite Di�erence Points

3 10

�5

100

6 10

�6

200

10 1.3 10

�6

10

�6

400

15 1.8 10

�9

20 1.3 10

�10

30 1.3 10

�10

Table 1: Comparison of spectral and �nite di�erence evolutions

While the �nite di�erence scheme converges quadratically, the spectral scheme converges

exponentially.

It is worth noting that with a grid resolution of 400 �nite di�erence modes round-o�

error begins to e�ect the numerical results. For instance, the numerical estimate of the

Bondi mass is found to increase slightly at large retarded times.
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Figure 2: Decay of the scaled Bondi mass, M
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3. Timelike geodesics

3.1 The geodesic equations

We derive the geodesic equations for the axisymmetric case by extremising the Lagrangian

L = 2H _u
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Since the geodesics are timelike
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The numerically generated spacetime is parameterised in terms of retarded time so it is

necessary to re-parameterise the equations. The � -derivatives are rewritten in terms of u,

by means of the transformations
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where (x
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to help simplify the structure of the resulting system of equations. The reorganised

system eliminates one equation, depends on u, and has been reduced to �rst-order. The

dependent variables are emphasised by enclosure in square brackets.
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Equation (15) was obtained from equation (7) and the timelike condition (11). Equation

(16) is a rearrangement of the de�nition (14). Equation (17) was derived from equation

(9). Equation (18) was derived from equations (10) and (15).

We note that equation (8) was not needed to derive equations (15) { (18). Use of

equation (8) would have led to a lengthy expression for

d

du

�

dr

du

�

.

It is evident from the form of equation (17) that

h

d�

du

i

cannot change sign. To measure

the passage of proper time along each geodesic we supplement equations (15) { (18) with

an additional equation:

d
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3.2 Final conditions

The Oppenheimer-Snyder solution consists of a collapsing spherically symmetric dust

cloud with Schwarzschild exterior. If we were to extrapolate this solution backwards

in time the dust would come to rest at in�nite radius. Therefore, having evolved the

Robinson-Trautman exterior to a large value of u, where it has e�ectively reached the

Schwarzschild steady-state, we now wish to send dust particles which correspond to surface

particles on the Oppenheimer-Snyder dust cloud 
ying backwards in time along timelike

geodesics. The appropriate \�nal conditions" for such particles are given by

r = (2 + �)m (20)

z 2 (�1; 1) (21)

� = 0 (22)

"

d�

du

#

= 1 �

s

2m

r

(23)

"

d�

du

#

= 0 (24)

� indicates how close to the event horizon the particles are when they commence their


ight backwards. Since the usual coordinates of the Robinson-Trautman spacetime do

not cover the interior of the black hole and exclude the event horizon, we should choose

� > 0. Condition (21) indicates that representative particles from all latitudes may be

included, and the choice that � be �nally zero is arbitrary. Equation (23) speci�es that

the energy of particles would take them to rest at spatial in�nity if they were moving

through Schwarzschild spacetime. Equation (24) is due to eventual spherical symmetry.

3.3 A collapsing dust-cloud

Returning to our example, we may now integrate the geodesic equations using fourth-order

Runge-Kutta integration, evaluating f , H and their derivatives using the spectral solution

to the Robinson-Trautman equation. We compare the motion of the dust particles with

the surface particles in the Oppenheimer-Snyder dust-ball, for which

r(� ) =

�

r(0)

3=2

� 3�

r

m

2

�

2

3

(25)

and z(� ) = const. Figure 3 plots the radii of dust particles at points close to the the

north and south poles. The solid lines refer to the motion of dust particles released in the

Robinson-Trautman spacetime with initial data as per the earlier example with � = 0:1.

The dashed lines show the motion of corresponding Oppenheimer-Snyder particles. Figure

4 plots the motion of two non-polar particles.

Spherical symmetry prevents any angular motion in the Oppenheimer-Snyder solution,

but in our example z changes with proper time (see Figure 5).
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Figure 3: Radius of the dust cloud near the poles

Figure 6 contains a sequence of snapshots of the dust-cloud. The retarded time is the

only candidate for a global time. Accordingly u is used to label the snapshots. The images

are vertical slices of the dust-cloud through the poles | the axis of rotational symmetry

runs up the page, through the centre of each image.
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Figure 4: Radius of the dust cloud at two non-polar points

4. Conclusion

In this paper we have started to tackle the problem of matching a dust interior to the

Robinson-Trautman exterior. A full solution to this matching problem would shed light on

the physical interpretation of Robinson-Trautman spacetimes by recreating the dynamics

of dust sources which generate Robinson-Trautman radiation.

Given that any non-trivial Robinson-Trautman solution must be numerically generated

in part it is unreasonable to expect to �nd a matter interior in closed form. At �rst glance
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Figure 5: Angular motion of a dust particle near the equator

it would seem that the most physically sensible approach to the problem would be to

arrange a forward simulation, in which a dust cloud of appropriate initial con�guration

is evolved forwards to determine the dynamics of the collapse. Unfortunately such an

approach appears to be infeasible. The initial con�guration of the dust-cloud determines

the dynamics of the vacuum exterior | it gives o� radiation | and we have no way of

knowing a priori what kind of dust clouds generate Robinson-Trautman radiation.

Guided by the fact that the pure Robinson-Trautman solution must settle down to

the Schwarzschild solution, we have chosen instead to solve an inverse problem: Given an

Oppenheimer-Snyder �nal state, what kind of initial dust-cloud could have generated the

Robinson-Trautman exterior? To solve this problem it is necessary to evolve backwards |

information now 
ows inwards | to allow the Robinson-Trautman exterior to determine

the shape of the boundary and to provide the boundary conditions which distort the

interior away from the Oppenheimer-Snyder dust-ball.

The next stage of our matching program involves evolving the interior backwards,

starting with a spatial slice of the Oppenheimer-Snyder dust-ball, using a using a 3+1

numerical algorithm.
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