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Abstract

We present evidence that, below a certain threshold scale, the horizon of a black

hole is strongly wrinkled, with its shape manifesting a self-similar (\fractal") spectrum

of 
uctuations on all scales below the threshold. This threshold scale is small compared

to the radius of the black hole, but still much larger than the Planck scale. If present,

such 
uctuations might account for a large part of the horizon entropy.

1. Introduction

Can a calculation based on Newtonian gravity teach us anything about a black hole?

If it can, then we will see that the surface of a black hole must be strongly wrinkled on

scales below a certain threshold scale �

0

, which in a certain Newtonian approximation

comes out as (Ml

2

p

)

1=3

, l

p

being the Planck length. It also looks plausible that this

wrinkling would be self-similar, lending the horizon what might be called a \fractal"

shape.

Such a departure from smoothness of the event horizon, seems noteworthy in itself,

but probably its greatest signi�cance would be in connection with black hole thermo-

dynamics. Let us therefore take a few moments to review some of the open questions in

that subject. One knows from a preponderance of evidence that a black hole behaves

as if its horizon carried a \surface entropy" of 2�A=l

2

p

(where l

2

p

= 8�G~, in units with

c = 1). Most of this evidence pertains to stationary black holes (the \First Law" re-

lating variations in a black hole's mass to variations in its horizon area, the instanton

computations of the partition function at \tree level", the thermal radiance), but there

is also the \Second Law" or area increase theorem (proved assuming \cosmic censor-

ship"), which applies to black holes out of equilibrium. This result can be interpreted

as the ~! 0 limit of the thermodynamic Second Law for systems including black holes

{ in that limit the black hole hole entropy should overwhelm all other contributions,

since the Planck length goes to 0 while S � A=l

2

p

. On this interpretation, the horizon

area gives the entropy even for black holes which are far from stationary.

(It is sometimes suggested that one should identify the surface of a black hole with its

apparent horizon, and that therefore the entropy of a black hole away from equilibrium
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ought to be the area of its apparent horizon, rather than that of its event horizon. There

is even a form of area theorem for the apparent horizon [1]. However, an entropy based

on the apparent horizon would sometimes jump discontinuously, although no physical

discontinuity in the metric or other �elds would be present. Moreover the concept of

event horizon is more robust than that of apparent horizon, and can make sense even

where the notion of smooth curve, or the divergence of a vector �eld does not. In

particular the notion of event horizon still makes sense in the context of causal sets,

since it relies only on the existence of a causal order.)

Despite all the evidence for the existence of an entropy associated with black hole

horizons, and despite the evidence that the resulting total entropy (horizon area plus

exterior entropy) is non-decreasing, there is still very little understanding of the \sta-

tistical mechanical explanation" of these facts [2]. In particular a derivation of entropy

increase on the usual pattern would have to rely on features like unitarity, ergodicity

and weak coupling, which appear to be absent in the case of black holes; moreover,

such a derivation would have to overcome the serious objection that, even for a black

hole near equilibrium, its interior region is far from stationary, rendering very doubtful

the assumption that the number of internal states contributing to the black hole's en-

tropy can be deduced just from a few external parameters such as its mass and angular

momentum. (For more discussion of these points see [3,4].) For these reasons, among

others, it remains unclear what degrees of freedom the black hole entropy refers to:

what states are being counted by N when one writes S = logN for a black hole.

2. How the Second Law might be proved

If one re
ects that the (\Generalised") Second Law refers e�ectively only to the

region external to the black hole, and if one takes to heart the fact that this region

ought (by the very de�nition of a black hole!) to obey an essentially \autonomous"

dynamics of its own, then it becomes natural to seek a proof of entropy increase based

on the \coarse-graining" that consists of ignoring whatever is occurring beyond the veil

of the event horizon.

I have earlier proposed such a proof [3], or rather a proof-scheme which can be �lled

in within any theory of quantum gravity that incorporates certain basic features. These

features are:

� that the (mixed) state for the external region be describable by an e�ective density

operator �

ext

acting in some hilbert space H

ext

� that �

ext

obey a law of evolution which is (at least to a good approximation) au-

tonomous and \Markovian"

� that energy be conserved and given by an operator E de�ned in the external region

and acting in H

ext

� that the subspace ofH

ext

in whichE < E

0

be �nite-dimensional for any �xed energy

bound E

0

.

It then follows rigorously that the value of S := tr� log �

�1

cannot decrease as the

hypersurface to which it refers moves forward in time. (For maximum generality, this
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hypersurface should be de�ned in some a priori manner, allowing reference to the rigid

\box" in which the whole system is taken to be enclosed.)

Notice that this approach to proving the Second Law requires that the degrees of

freedom which the black hole entropy manifests be accessible in the region outside of

the black hole (modulo whatever small blurring of the horizon can be expected from

quantum gravitational e�ects).

3. Possible sources for the entropy (and a gas analogy)

Aside from locating them in the external region, the proof just discussed does not

specify what \degrees of freedom" the information represented by the horizon entropy

actually expresses. Ideally one would like to trace these degrees of freedom directly

to some fundamental quantum theory underlying General Relativity. Thus one might

seek them in the causal links straddling the horizon (causal set theory [5]), in the

\fundamental loops" straddling the horizon (loop representation in canonical quantum

gravity), or in the variables describing the fundamental strings intersecting the horizon

(superstring theory

�

).

No doubt, understanding the entropy in this way would teach us most about the

nature of quantum gravity on microscopic scales. It should in particular answer the

question whether spacetime exists at all fundamentally, and if not, what replaces it.

However, it is also conceivable that the fundamental variables, whatever they might be,

admit of an e�ective description on super-Planckian scales, in terms of which much or

all of the entropy could be described in terms of currently understood theory. Such a

description might not teach us as much about the deeper nature of spacetime, but it

would be equally valid in its proper domain. And it would represent for the deeper

theory a signpost, and a challenge to connect up the deeper degrees of freedom with the

more phenomenological ones.

For the sake of analogy, consider a box of gas at high temperature. Here, the

fundamental degrees of freedom are those of the molecules composing the gas: their

positions and (in the case of a classical description) their velocities. Fundamentally the

�niteness of the entropy of such a gas rests on the �niteness of the number of particles

composing it, as can be seen if the entropy is written as follows:

S=k = N log

V T

d=2

MK

0

: (1)

Here d is the (spatial) dimension, N the number of particles, V the volume, T the tem-

perature, M the total mass of the gas, and K

0

is a constant depending on Boltzmann's

constant k, ~, and the mass of an individual molecule, speci�cally K

0

is a d-dependent

numerical factor times

p

~

2d

=k

d

m

d+2

. The formula is an approximation which is valid

�

Note added later: I do not know whether the various branes recently proposed as carriers of the

entropy in superstring theory can be regarded as localised in the neighbourhood of the horizon or not.
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as long as the gas is hot enough to avoid quantum degeneracy, i.e., as long as the

argument of the logarithm is � 1.

It is clear from this formula that the entropy goes to in�nity with N . This does

not mean, however, that it would be impossible to understand (at least part of) the

entropy in a continuum picture. Indeed 
uctuations in the molecular positions can be

redescribed | if they are su�ciently regular | as 
uctuations in a continuum density

function f , and more generally, the gas can be described at some level of approximation

as a 
uid. If an entropy could be computed within a 
uid description, then one would

obtain an accounting of the contributing micro-states in terms of the 
uctuations of

collective degrees of freedom like the mass-density and velocity �elds. Computed this

way, the entropy would presumably come out in�nite for a truly continuous 
uid (which

wouldn't know about the size of a molecule), but it could be rendered �nite by omitting

the physically meaningless density 
uctuations occurring (in the continuum model)

below the scale set by the intermolecular spacing. The question would be then: how

much of the entropy would we recover in this manner?

I don't know if anyone has done such a computation, but I would like to take this

opportunity to comment on some aspects of the problem, limiting myself to the case of

a non-degenerate, dilute gas. If one thinks to quantise the \sound waves" of the gas (the

irrotational modes of the linearised 
uid equations), and if one ignores the damping of

these waves, one obtains, naturally, a typical black body | or in this case \silent body"

| spectrum of phonons, with associated �nite entropy. Without a cuto�, this entropy

is much in excess of the correct answer (1), but if one cuts the sound modes o� at the

intermolecular spacing, then the entropy comes out nearly correct(!).

But really, there are at least three relevant length-scales in this problem: the molec-

ular mean-free-path, the intermolecular spacing, and the de Broglie wavelength of a

molecule, each much bigger than the next (for a non-degenerate, dilute gas). Logi-

cally, one should take the �rst rather than the second of these as the sound cuto�,

because below that scale phonons clearly cannot propagate.

F

This shows up in the con-

tinuum approximation as a wavelength-dependent damping of the sound modes which

becomes a critical damping when the wavelength reaches the mean free path. Thus,

the \silent body phonon entropy" is actually much less than the full entropy, when the

non-propagating modes are omitted.

So, how can we estimate the contribution of these omitted modes? In the continuum

approximation without any cuto�, irrotational modes exist with wavelengths right down

to zero, but those shorter than the mean free path have purely imaginary frequencies

(they are non-propagating). Therefore, in order to evaluate the omitted modes' contri-

bution to the entropy, we would have to understand the entropy of a damped harmonic

F

The third length-scale, namely the molecular de Broglie wavelength, plays a role formally as the

shortest wavelength of phonons which can be thermally excited at the given temperature. That is, it

provides the familiar quantum cuto� that renders the \silent body" entropy �nite, despite the in�nity of

phonon modes that formally exist, in the absence of damping. When the gas is just verging on quantum

degeneracy, this third length-scale approaches the intermolecular spacing, and the silent-body entropy

takes on the correct order of magnitude without the need of a cuto�.
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oscillator. It seems plausible that such an oscillator carries more entropy than an un-

damped one, and in particular that it has entropy, even in its ground state. If so, the

entropy from the propagating sound modes would increase by an amount to be deter-

mined, but more importantly, one might hope that the non-propagating modes lying

between the mean free path and the intermolecular spacing would still contribute the

entropy required to produce the correct total. On the other hand, the in�nity of non-

propagating modes existing below the intermolecular spacing might by the same token

be expected to contribute an in�nite entropy, con�rming the expectation that a �nite

total entropy demands a �nite cuto�. (Might a similar in�nite entropy be produced by

the in�nity of highly damped, quasi-normal modes of a black hole?)

In addition to the irrotational modes, there are (except in d = 1) a huge number of

rotational ones, which the above discussion has totally neglected. Such \vortex modes"

o�er another source of entropy beyond that of sound, a source whose contribution is also

plausibly in�nite in the continuum theory (especially since there seems to be no reason

for the frequencies of such modes to grow with decreasing wavelength). And further

complicating matters are the nonlinear terms in the 
uid equations, whose presence

might invalidate any computation of the entropy carried out within a purely linear

approximation.

A �nal comment here is that the phenomenological parameters (or \coupling con-

stants") which enter the 
uid equations, such as the viscosity, the heat conductivity

and the speed of sound, implicitly contain information about the values of microscopic

quantities such as the molecular mass. Thus, my earlier argument that the 
uid model

\wouldn't know about the size of a molecule" was at best suggestive; and only a more

careful analysis of the sort just sketched can tell us for sure whether a cuto� is required

to render the entropy �nite.

Now let us contemplate a black hole in the spirit of the above discussion. Is it

possible that all or part of its entropy can be accounted for in terms of e�ective degrees

of freedom which are independent of whatever variables a deeper theory might prescribe,

for example, the degrees of freedom of the standard model, including gravity? Here I

wish to consider only two possible contributions, both of which will turn out to be

intimately related with the horizon wrinkling toward which we are heading.

3.1. Entropy as shapes

The �rst of these possibilities is perhaps the most obvious one [6], namely that the

e

S

microscopic alternatives the entropy is counting are the alternative shapes of the

horizon. This explanation is appealing because it o�ers a geometrical origin for the

very geometrical relationship

S = 2�A: (2)

(In fact, even the factor of 2� in this equation is geometrical! It represents the radius

of the unit circle in one way of doing the tree level instanton calculation [7].) The

universality of the coe�cient in this equation would thereby be traced to the univer-

sality of the geometrical degrees of freedom of the horizon, which are always the same,

independently of whatever non-gravitational �elds may be present in the theory.
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3.2. Entropy as entanglement

A second possibility [8] (not necessarily exclusive to the �rst) is that the entropy

is carried by quantum �elds propagating in the neighbourhood of the horizon, or more

speci�cally that it is the \entropy of entanglement" which arises when one neglects

the correlations between the �eld just inside and just outside the horizon, i.e., when

one performs the coarse-graining referred to earlier in connection with the Second Law.

This entanglement entropy can be computed for the case of a free �eld [6,9], and, as

suggested by our gas analogy, it turns out to be in�nite in the absence of a cuto�.

Without going into the details, one can still give an intuitive picture of the origin

of this in�nity. Let us imagine a 
uctuation in the �eld � of linear extension � in

the neighbourhood of the horizon. If the 
uctuation is totally outside or totally inside

the horizon, it contributes no more to the entropy than it would to the entropy of the

vacuum in 
at spacetime. But if it happens to sit astride the horizon, then it sets up

a correlation in the value of � between inside and outside, which is the \entanglement"

that gets lost when one traces out the degrees of freedom inside the horizon. Since �eld


uctuations can occur independently on arbitrarily small scales, one can understand

that their total contribution to S is in�nite.

When a cuto� is imposed, one gets instead of in�nity, the result S = (const.)A=l

2

0

,

where l

0

is the cuto� expressed as a length, and the constant is of order unity, its

precise value depending on how the cuto� is introduced and normalised. (S can also

have corrections of higher order in the ratio of the cuto� to the radius of curvature

of the horizon.) But this value for S has the right order of magnitude precisely when

l

0

� l

p

. Given this striking result, it is tempting to conclude �rst, that the horizon

entropy is indeed entanglement entropy, and second, that its �niteness is telling us

about a fundamental granularity of spacetime.

3.3. Species dependence and the coupling of �eld 
uctuations to the horizon

There is, however, at least one worry which at �rst sight would seem to prevent the

identi�cation of horizon entropy with the entanglement entropy of �elds, namely the so-

called \species-dependence problem", that is, the problem that the precise magnitude

of the entanglement entropy would seem to depend on the number and type of �elds

present in nature, whereas the formula (2) cares only about the area of the horizon.

One might think that this di�culty could be avoided only thanks to some inbuilt

constraint on which �elds actually exist in nature (as might occur in a uni�ed theory

such as superstring theory), or alternatively that it could be avoided by \back-reaction"

e�ects which would couple the �eld 
uctuations to the horizon shape, thereby modifying

the formula for the entanglement entropy. It is actually the second idea which motivated

the calculation I want to describe in a moment; but, interestingly enough, we now know

that there might not be any di�culty at all, thanks to the work of [10], which pointed

out that the (renormalised) value of G also depends on the number of species, and in

just the way needed to cancel the species dependence of the entropy. It is true that

adding (say) a new species of particle will necessarily increase the entropy at �xed cuto�.
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But, at �xed cuto� the value of 1=8�G also will be modi�ed by the addition of a new

species, i.e., l

p

will be modi�ed; and an e�ective-action calculation then indicates that

the two modi�cations will compensate each other, so that the relation S = 2�A=l

2

p

will

remain una�ected.

Although this is heartening, it does not return the back-reaction genie to her bottle:

we still have to sort out how �eld 
uctuations distort the horizon's shape, if we want

to understand the status of the entanglement entropy. It might turn out that �eld


uctuations coupled strongly to the horizon shape for wavelengths � below some �

0

, and

if it did, then the attendant deformations of the horizon could not be ignored (as they

have been so far) in computing the entanglement entropy. How then can we estimate

the strength of the coupling between the horizon and the quantum �eld 
uctuations in

its neighbourhood?

4. A Newtonian calculation of the induced 
uctuations in the horizon's

shape

To get at least a preliminary indication of when this coupling is likely to be impor-

tant, let us estimate it [11] in the crudest possible manner, namely using a Newtonian

approximation for the gravitational �eld produced by the �eld 
uctuations. Since New-

tonian gravity is so easy, I can give the calculation in full (taking c � 1 and 8�G � 1).

To get started, we need a de�nition of the Newtonian horizon, and I will use the

usual one, which locates it at the surface where the escape velocity is that of light, i.e., at

the locus of points where v = 1 in the equality mv

2

=2+mV = 0, V being the Newtonian

potential. (Notice, however, that this de�nition totally ignores any time-dependence in

the gravitational �eld.) The equation de�ning the horizon is then

V = �1=2:

For our unperturbed horizon, we take that of a point massM , which turns out to be the

sphere whose radius R is (by a famous coincidence) exactly the Schwarzschild radius,

R =M=4�. Thus, our unperturbed gravitational potential, when expressed in terms of

R, is

V

0

= �

R

2r

where r denotes the distance to the center of the black hole.

Now consider a 
uctuation of size � which happens to �nd itself astride the horizon.

On dimensional grounds, its associated energy should be of order 1=�, so I will take it

to be exactly m = 4�f=� where f is a conveniently normalised \fudge factor" of order

unity. The energy m will be spread out over the support of the 
uctuation somehow,

but the precise density pro�le will not a�ect our conclusions. For convenience, I will use

a density of � = 2f=r

1

(r

1

+�)

3

, where r

1

is the distance to the center of the 
uctuation.

The potential caused by such a mass distribution is

V

1

=

�f=2�

r

1

+ �

:
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Hence, the location of the perturbed horizon is determined by

�2V =

R

r

+

f=�

�+ r

1

= 1 (3)

where V = V

0

+ V

1

is the total perturbed potential.

4.1. The height and shape of the deformation, neglecting retardation

To get an idea of the height of the bulge (or depression) induced by the �eld 
uctu-

ation consider equation (3) \on axis", i.e., along a radial line joining the center of the

unperturbed black hole to the center of the 
uctuation (which we take to lie precisely

on the unperturbed horizon). With h := R � r the height of the bulge, we have from

(3)

R

h+R

+

f=�

� + h

= 1:

This equation is easily solved exactly, but it is just as instructive to solve it in the

approximation h; ��R, where it becomes

h

�

(

h

�

+ 1) �

fR

�

3

� (

�

0

�

)

3

with

�

0

= (fR)

1=3

:

From this it is easy to see that � � �

0

is a critical length, above which a 
uctuation

of size � induces only a very small h such that

h=� � (�

0

=�)

3

� 1;

in other words, the distortion of the horizon is much smaller than the 
uctuation itself,

and in this sense the coupling between them is weak. For � � �

0

, on the other hand, we

have h=� � 1, and the distortion is comparable in size to that of the 
uctuation which

raised it (strong coupling). Finally, for �� �

0

we nominally �nd a bulge which is much

greater than the 
uctuation size, but here our approximations are clearly breaking down:

it is no longer reasonable to treat the 
uctuation in isolation from other 
uctuations,

nor is it reasonable in this regime to have neglected retardation e�ects, given the �nite

lifetime of the �eld 
uctuation.

Finding the pro�le of the induced bulge (or depression) is also straightforward. With

the same approximations as before, we can treat the unperturbed horizon locally as a

plane, and then the height y of the perturbed horizon above this plane as a function

of distance x along the plane from the center of the 
uctuation is the solution of the

equation,

y

�

 

1 +

r

�

x

�

�

2

+

�

y

�

�

2

!

�

�

�

0

�

�

3

:

Thus, like the height, the lateral pro�le also depends only on the ratio R=�

3

. When

plotted, this pro�le looks like a smooth bump which, for � � �

0

, is about as wide as it

is high. (For all values of �=�

0

the width of the bulge is comparable to the greater of

its height h and the 
uctuation radius �.)
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4.2. A self-similar wrinkling for �

<

�

�

0

?

To summarise, the size and shape of the horizon distortion induced by our �eld


uctuation depends on the ratio �=�

0

. For � � �

0

the 
uctuation raises a bulge

much smaller than itself, whereas for � � �

0

the bulge is (nominally) much larger. In

particular, the deformation of the shape of the horizon, becomes comparable in size

to the 
uctuation itself precisely when � � �

0

. It turns out that these conclusions do

not depend on the speci�c pro�le chosen for the e�ective mass density attributed to

the 
uctuation. A point mass leads to the same picture, as does a dipolar source with

vanishing total energy (perhaps a more appropriate model of a virtual 
uctuation of a

quantum �eld).

On the other hand, the total neglect of the �nite lifetime of the 
uctuation, and in

particular of the attendant retardation e�ects, seems a more serious matter. We can

assume (again on dimensional grounds) that the 
uctuation has a lifetime of order �, but

it is not so obvious how to take this into account in our Newtonian approximation. One

approach is simply to imagine that the gravitational force due to the �eld 
uctuation is

present only during its lifetime; or one could imagine in addition that the force, while

it exists, extends only a distance � from the 
uctuation. With the �rst modi�cation,

the weakly coupled 
uctuations (�

>

�

�

0

) behave basically as before, but for �

<

�

�

0

the horizon distortions now remain at a height �

0

rather than growing inde�nitely big;

however, even this height far exceeds the 
uctuation size when �� �

0

. With the second

modi�cation added in, it is plain that the bulge size can never exceed � itself, consistent

with the intuition that the in
uence of a 
uctuation should not extend much beyond

its immediate vicinity when retardation e�ects are incorporated properly.

Thus, it seems plausible that the deformations in the horizon due to �eld 
uctua-

tions of size � are actually of size � themselves, for all �

<

�

�

0

� (Ml

2

p

)

1=3

. The resulting

horizon geometry could be described as \fractal" (meaning self-similar) on scales be-

tween l

p

and (Ml

p

2

)

1=3

(it being doubtful whether spacetime exists as a continuous

manifold at all, on scales below l

p

). Perhaps one could also interpret this wrinkling of

the horizon as a quantum blurring of its location which e�ectively thickens it from a

2-dimensional surface into a shell of thickness �

0

. In principle there is no limit to how

large this wrinkling could grow if su�ciently massive black holes were available, but the

prospect of human-sized distortions in the shape fades when one plugs in the numbers:

on a solar mass black hole, for example, the bumps would only reach a scale of around

10

�20

cm, and for them to attain a size of even 1 cm, a black hole of the unheard of

mass of 10

91

grams would be called for.

5. Implications and questions

5.1. Implications

We can now tender a tentative answer to our question of how strongly the horizon

couples to the 
uctuations of quantum �elds (presumably including the graviton �eld)

propagating in its neighbourhood. To the extent that the preceding analysis is a good
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guide, the answer is that the coupling is weak on scales �� �

0

but strong in the opposite

case. The implication of this for entanglement entropy is that the approximation of

quantum �elds propagating in a �xed background geometry is unsuitable for �

<

�

�

0

,

which means in turn that we are at present unable to estimate reliably the magnitude of

the entanglement entropy (or even to de�ne it) in this regime. But if we limit ourselves

to modes for which �

>

�

�

0

, we obtain only an entropy of magnitude

S

entangle

�

A

(�

0

)

2

�

A=l

2

p

(R=l

p

)

2=3

� A=l

2

p

:

Hence entanglement entropy (at least the portion of it that we understand) cannot

provide more than a small fraction of the total horizon entropy.

If the full entanglement entropy were indeed small, that would resolve the species-

dependence problem (to the extent that any problem remains), but it would also force

us to seek a di�erent source for the bulk of the horizon entropy. Of course the horizon


uctuations we have just derived are themselves such a source [6], and they should

provide approximately the right amount of entropy as well (assuming, as always, a

cuto� at around the Planck length), because they are equally as numerous as the �eld


uctuations to which they correspond, and which in some sense they replace.

5.2. Questions concerning a fully relativistic treatment

To what extent could our \improved Newtonian" computation be repeated in the

context of full general relativity, and to what extent would we expect to arrive at the

same conclusions if we did repeat it? Indeed, what exactly do we mean here by \the

same conclusions"? I am not going to try to answer these questions now, but only to

amplify them somewhat in the following list.

� How should we model the �eld 
uctuations?

In the Lorentzian context, would a (smeared out) energy loop be a suitable model of

the e�ective stress-energy tensor T

ab

of a �eld 
uctuation, since it would be conserved?

(The Newtonian equivalent could be an extended mass dipole.) But wouldn't we really

need a Lorentz invariant distribution of such loops?

Or, rather than trying to model 
uctuations in T

ab

, could we just use the (renor-

malised) operator

d

T

ab

itself, and compute the induced horizon distortions directly from

it. Perhaps this could be accomplished via the Raychaudhuri equation.

� Can we compute the horizon distortion in a graviton picture?

Here the idea would be to translate the quantised linear 
uctuations in the metric

(gravitons) directly into horizon distortions, and analyse the latter using the correlation

functions of the graviton �eld. This would be complementary to the kind of computation

performed above, because e�ective stress-energies wouldn't be involved at all.

� How to handle the non-linear regime?

Only a question without any indication of an answer for now| but a crucial question

since it is just those 
uctuations (with � � l

p

) that contribute most to the entropy for

which a linear approximation is least likely to be adequate.
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� Can we �nd the horizon shape \thermodynamically"?

The idea here would be to assume that the 
uctuation formula probability / e

�S

(valid at �xed energy) works as usual for black holes, and use it to de�ne a probability

distribution on the space of all initial data for the classical Einstein equations with a

�xed energy, but varying horizon area. The only horizon distortions with non-negligible

probability would then be those with �S � �1, or equivalently �A � �l

2

p

. One could

then ask whether the fractal shapes suggested above would emerge as the most probable

horizon con�gurations in this non-dynamical, \thermodynamic" approach.

� Can we de�ne a horizon dynamics?

If one could isolate an approximately autonomous set of dynamical equations gov-

erning the time-development of the horizon in classical general relativity, then one could

try to \quantise" these equations, and thence to �nd | and compute the entropy of | a

suitable quantum state representing the horizon in \internal equilibrium". Such a state

would presumably be mixed because the dynamics (presumably) would be dissipative

(like that of the damped sound modes in our gas example).

Another approach might be to interpret the quasi-normal black hole modes as hori-

zon oscillators (sensible?), and then attempt to compute their entropy from their damp-

ing constants. Unlike the �rst suggestion, this one obviously would be restricted to

linearised 
uctuations about stationary black holes.

� Is the Newtonian picture frame-dependent or modi�ed by the gravitational redshift?

Even if we accept the conclusions of our Newtonian calculation, there is the question

of how to interpret the \thickening" of the horizon by �r � �

0

. Does �r translate into

a Schwarzschild coordinate distance or a proper distance or something else (and if a

proper distance then does the reference frame matter, given that the horizon is a null

surface)? Also, does the general relativistic red shift modify our estimate of �

0

? There

is some indication from both these sides, that �

0

� M

1=3

might change to �

0

� M

1=2

,

in a generally relativistic treatment.

Well, if we can answer some of these questions, then we should gain a much better

conception of the small-scale structure of the horizon; and that in turn should allow us

to make a more de�nite assertion than we can at present, about whether the �niteness

of a black hole's entropy necessarily entails a fundamental spacetime discreteness.

In conclusion, I would especially like to thank the other participants at the confer-

ence for their stimulating questions and suggestions, during and after my talk.

This research was partly supported by NSF grant PHY-9600620.
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