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Abstract

Ever since the Hawking-Penrose singularity theorems of the 1960s, it has become

clear that our universe possesses an unavoidable singularity in the past. The only

ways to avoid the singularity using purely classical physics is either to postulate spe-

cial kinds of matter or move to higher order Lagrangian theories. Alternatively one

can appeal to quantum gravity, thermodynamic arguments or the discretisation of

space-time to avoid the singularity predicament. None of these approaches provide

totally satisfactory answers to the singularity problem.

If one stays within classical general relativity and accepts singularities as part

of physics then it is necessary to de�ne a boundary structure to space-time in

a mathematically consistent and rigorous manner. Such boundary structures are

brie
y described here and the behaviour of cosmological models near the boundary

is discussed. Particular reference is made to the blue-shift problem and the Weyl

curvature hypothesis.

1. Introduction

The Penrose-Hawking incompleteness theorems of the 1960's [1] show that all space-

times having certain minimally acceptable physical attributes develop singularities. If

the incompleteness lies to the past of some event it is called a cosmological singularity.

A typical example of such a theorem which resulting in a cosmological singularity is the

following:

Theorem (Hawking [2]): Let (M;g) be a space-time for which

(1) The strong energy condition holds, i.e.

R

��

u

�

u

�

= T

��

u

�

u

�

+

1

2

T � 0

for all unit timelike vectors u

�

u

�

= �1.

(2) Strong causality holds.

(3) There exists a point p such that all past directed timelike geodesics through p start

reconverging in a compact region to the past of p.

Then the space-time is not singularity-free (has incomplete causal curves).
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The physical content of these is assumptions is as follows: (1) asserts that if � is the

energy density and P

i

are the principal pressures, then

�+ P

i

� 0 for i = 1; 2; 3; and �+

3

X

i=1

P

i

� 0:

(2) essentially requires that there be no closed timelike curves (the condition is actually

slightly weaker than this), and

(3) implies that there is a closed trapped surface in the past null cone of p.

Hawking and Ellis subsequently showed [3] that the observed isotropy of the cosmic

black body radiation implies that condition (3) is met, and furthermore that every event

on the surface of last scatter (z = 1000) has a singularity in its past.

Theorems such as this demonstrate that general relativity predicts its own limitations.

Our universe would appear to have an unavoidable singularity in its past, a region or

boundary of which physics cannot speak. To meet this impasse two basic strategies

have arisen. Either one attempts to �nd ways in which the conclusions of the singularity

theorems can be avoided, or one accepts the conclusion and tries to make the best physical

and mathematical sense one can out of a singular space-time. In this paper we summarise

the main arguments and conclusions for these two strategies.

2. Avoiding the singularity

2.1 Scalar �elds

While no physically sensible perfect 
uid violates the strong energy condition, this is not

generally true of classical �eld theories. For example, a scalar �eld � subject to a potential

V (�) > 0 will have density and pressure in a Robertson-Walker cosmology given by

� =

1

2

_

�

2

+ V (�); P =

1

2

_

�

2

� V (�):

The strong energy condition is seen to be violated if

_

�

2

< V (�). Since initial conditions

�

0

and

_

�

0

may be set arbitrarily, it is clearly possible to achieve this at any initial time

t

0

.

Consider, for example, a spatially 
at Robertson-Walker metric expressed

ds

2

= �dt

2

+ e

2�

(dx

2

+ dy

2

+ dz

2

):

Adopting units such that Einstein's gravitational constant is unity, the �eld equations are

�� = �

1

2

_

�

2

= �3 _�

2

+ V (�):

Now the function �(t) can be arbitrarily chosen subject to the restraint �� < 0, we integrate

the �rst equation to �nd � = �(t) and read o� V (t). Inverting the � evolution to �nd

t(�) we see that there always exists a potential V (�) which has the initially postulated

�(t) as a solution of these equations. As a trivial example let us pick � = �t

2

. This is a
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non-singular cosmology, which expands from an in�nitely small space in the in�nite past

and then recontracts back in the in�nite future. The scalar potential which arises from

the above procedure is

V (�) = �2 + 3�

2

:

This is in fact the potential of a massive scalar �eld, shifted by a negative constant (i.e.

cosmological constant), not a totally unreasonable potential for a physicist to contemplate.

While the negative cosmological constant might be objected to, it is not hard to �nd

examples in which V (�) is positive everywhere (a similar example has been found by

Madsen [4]).

Examples such as this would however appear to be rather special, and they are prob-

ably unstable. A general theorem recently proved by my student S. Foster states that

for any positive potential V (�) which grows no faster than an exponential function as

j�j ! 1 (e.g. any polynomial potential), the generic behaviour of cosmological solutions

is asymptotic to the solution corresponding to a zero mass potential V (�) = 0 [5]. It

seems then that the generic behaviour of all Robertson-Walker scalar �eld potentials will

have scaling factor R(t) � t

1=3

and should have a genuine singularity in the past.

2.2 Higher order Lagrangians

While alternative gravitational �eld theories such as Brans-Dicke can be expected to

su�er a similar fate to the scalar �elds discussed above, it is sometimes proposed that

Lagrangians made up of higher order invariants of the curvature tensor may govern the

gravitational �eld equations. For example, as a result of Lanczos' identity [6] the most

general action up to quadratic terms in the curvature tensor has the form

�

Z

p

�gf
(R� 2�) + �R

2

+ �R

��

R

��

g+ L

matter

d

4

x;

which leads to fourth order �eld equations for g

��

.

While undoubtedly there are singularity free cosmologies in such theories the freedom

available in initial data seems to be overgenerous as it is necessary to specify not only

the metric components g

ab

and their time derivatives _g

ab

on any spacelike surface t =

const, but their second and third time derivatives as well. The amount of freedom now

available makes it very easy to circumvent the singularity theorems, but only at a cost

of overspecifying initial data in a manner which most physicists would consider to be

unnatural.

2.3 Quantum gravity

Probably the most frequently expressed hope is that a proper quantum theory of gravity

will avoid the problem of singularities. Quantum �eld theory of course has singularity

problems of its own, making it necessary to invent all kinds of renormalisation techniques.

It seems a fairly forlorn hope that the singularities of QFT should in some magical manner
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cancel out the singularities arising in general relativity, and this is almost certainly not

what is expected to happen by even the most ardent proponents of this view.

In the absence of a satisfactory quantum theory of gravity, the best we may have

to work with at present is a heuristic such as is represented by the Wheeler-deWitt

equation [7, 8]. This is essentially a kind of Schr�odinger equation for the wave function

of the universe 	, de�ned on superspace, the space of all possible 3-geometries h

ij

in the

canonical formulation of general relativity. The in�nite number of degrees of freedom

inherent in the Wheeler-DeWitt equation is in practice quite intractable, so one usually

restricts the metrics to those possessing a high order of symmetry such as characterised

by one of the Bianchi types. This has the e�ect of reducing superspace to a space of

�nitely many degrees of freedom known as minisuperspace and by this technique the

Wheeler-DeWitt equation becomes manageable.

While the possibility exists here for avoiding the singularity at R = 0, particularly if

one invokes the Hartle-Hawking \no-boundary" condition [9], there is considerable am-

biguity in the choice of wave equation and the sorts of allowable boundary conditions.

Probably even more signi�cant is the fact that it is hard to be sure what it all can mean,

as the time parameter in the Wheeler-deWitt equation is certainly no ordinary time as

understood in general relativity. The evolution of the wave function of the universe seems

to be happening in some kind of \super-time" of which no ready physical interpretation

is available.

2.4 Thermodynamic arguments

A totally di�erent line of attack on the problem of the cosmological singularity has been

suggested by Bekenstein, who argues that the singularity must be avoided on thermo-

dynamic grounds alone [10]. Bekenstein points out that the entropy S of any complete

physical system with total energy E, enclosed within a sphere of radius R, has an upper

bound given by

S

E

�

2�R

�hc

(units are such that Boltzmann's constant k = 1, so that entropy is dimensionless).

Applying this to the entire universe, setting the radius to be the event horizon R

H

= 2ct

(assuming pure radiation), we have at early times

� = NaT

4

; s =

4

3

NaT

3

whence

S

E

=

s

�

=

4

3T

�

2�R

H

�hc

=

4�

�h

t:

Now applying the very robust formula for temperature evolution

T �

 

45

32

c

5

�h

3

NG�

3

t

2

!

1=4

;
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we see that

t

>

� N

1=2

s

G�h

c

5

= N

1=2

t

Pl

where t

Pl

is the Planck time. It would seem therefore that any time earlier than N

1=2

t

Pl

is

thermodynamically impossible. Bekenstein's argument and its further extension to more

general cosmologies by Schi�er [11] is rather more sophisticated than this, but all the

essentials of the argument are encapsulated in the above.

However while it may be of some comfort to know that thermodynamics rules out eras

close to the Planck time and therefore avoids the initial singularity, Bekenstein's argument

leaves us with no alternatives at these early times. It still begs the question, what exactly

does happen to the universe near the Planck time?

2.5 Discrete space-time

Another possibility is that, in the ultimate analysis, the continuum manifold picture

of space-time does not hold true and some more discrete structure takes over at small

enough scales [12, 13]. To see that discreteness might be expected to apply at similar

scales to those arising from Bekenstein's thermodynamic argument, consider the following

argument.

From the constants of classical gravitation (G and c) one can construct a unit of power

P

�

=

c

5

G

= 3:6 � 10

52

joules/sec:

This is the sort of power one expects to be generated in the �nal stages of gravitational

collapse into a black hole. By the \no-hair theorems" no process could be more e�cient

than this and P

�

must represent an upper bound to the power generation of any physical

process whatsoever.

To locate a particle within a time interval �t one needs, by the uncertainty principle,

an energy E > �h=�t. This involves a power generation E=�t and if this is to be less than

the maximum power P

�

we see at once that

�t >

s

G�h

c

5

= t

Pl

:

Similarly the minimum locatable spatial distance for a particle would be

�x = c�t >

s

G�h

c

3

= `

Pl

:

No physical meaning can therefore be attributed to distances and times less than those

de�ned by the Planck scale, and some kind of discrete structure must surely apply at this

scale .

Bekenstein's scale, which is probably some tens of Planck scales, represents the be-

ginning of breakdown of the classical regime. In the totally discretised pre-Planck space-

time, the causal relations will have totally broken down as particle paths disintegrate into
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a \space-time rubble" (see �gure 1). Time's arrow arises with the growth of thermody-

namics itself, which cannot occur until the Bekenstein era. While the details still have

to be worked out, it is interesting to note that D. Meyer [14] has shown how the arrow

of time can arise as a phase transition phenomenon in a causal lattice with an Ising-type

action on it.

PRE-PLANCK

SPACE-TIME

   DISCRETE

TIME’S ARROW

            ERA
BECKENSTEIN

CLASSICAL
   REGIME

PLANCK ERA

Figure 1: Transition from discrete to continuum space-time.

3. Singularity acceptance

3.1 Boundary constructions

Is it possible to stay within general relativity and somehow accept the existence of singu-

larities as part of the theory? One of the �rst tasks would then be to give singularities

some kind of mathematical legitimacy by de�ning a boundary structure for a space-time

manifold.

Historically the best known de�nitions of a boundary for a space-time have been (a)

Geroch's g-boundary [15], (b) the c-boundary of Geroch, Kronheimer and Penrose [16],

and (c) Schmidt's b-boundary [17] based on the bundle of frames L(M). The latter has

been frequently adopted as the best available since it is applicable to much more general
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manifolds. Indeed, only an a�ne connection is needed on the base manifold to de�ne

the b-boundary. However, despite the mathematical elegance of this construction, it is

prohibitively di�cult to carry out in practice, and can lead to strange identi�cations of

boundary points in even the simplest situations.

Recently Susan Scott and I gave a new boundary de�nition which seemed to have all

the advantages of generality inherent in the b-boundary construction, yet was reasonably

straightforward to apply on speci�c metrics [18, 19]. Our abstract boundary or a-boundary

was devised in order to make rigorous the most common coordinate-minded ways of

discussing singularities. In the usual situation one is presented with a coordinate patch

U (an open set) at the boundary of which some metric components or their derivatives

become singular. The question arises: is this singularity a real one or can an extension of

the manifold be found such that the metric components become regular on the boundary

@U?

If an extension is possible then there is an open embedding � of M into a larger

manifold (

c

M;

b

g) of the same dimension such that �(U) has boundary points which are

regular points of (

c

M;

b

g). The a-boundary concept attempts to display singular boundary

points in a similar way, but as being \failed" boundary points of M , i.e. boundary points

which cannot be regularised by any enveloping manifold (

c

M;

b

g).

Open embeddings � : M !

c

M are the key to the construction and we call them

envelopments. While the details of the abstract boundary construction are fairly involved,

the essence of the de�nition can be visualised as follows. Consider two envelopments

� : M !

c

M and �

0

: M !

c

M

0

, and let p be a boundary point of the image set �(M)

by the �rst envelopment, and p

0

be a boundary point of the second envelopment. We will

say the the boundary point p

0

covers p if whenever a sequence of points x

1

; x

2

; : : : in M

approaches p then it also approaches p

0

and vice versa. In mathematical notation

p

0

covers p if and only if �(x

n

)! p =) �

0

(x

n

)! p

0

8fx

n

g 2M:

p and p

0

are said to be equivalent boundary points if p

0

covers p and vice versa (see

�gure 2). The abstract boundary is then de�ned as the set of equivalence classes [p]

(abstract boundary points) de�ned by this equivalence relation.

A boundary point p of an envelopment � : M !

c

M is called an (essential) singularity

if it can be approached by a geodesic (or other speci�ed type of curve such as a curve

of bounded acceleration) with �nite parameter but cannot be covered by a non-singular

boundary set. The latter means a set of boundary points p through which it is possible

to extend the metric g to a metric g in a neighbourhood of p in

c

M . The notion of being

an essential singularity can be shown to pass to the abstract boundary, and provides us

with the concept of an abstract singularity.

Now let p be a boundary point of some envelopment of a space-time (M;g). We de�ne

its future set I

+

(p) to be the set of all points q 2 Ma such that there is a past directed

curve from q which approaches p. Similarly one de�nes the past I

�

(p)a. This notion

readily passes to the abstract boundary B(M), so that we have a de�nition of the future

and past of an abstract boundary point, denoted I

�

[p]. A cosmological singularity is an

abstract boundary point [p] which has a future but no past, i.e. I

+

[p] 6= ; and I

�

[p] = ;.
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M̂
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Figure 2: Equivalent boundary points

3.2 Dynamical conditions near the singularity

Now that we have a reasonably satisfactory mathematical de�nition of what a cosmological

singularity actually is, the most important questions relate to how the space-time can be

expected to behave as we approach the singularity.

In a Gaussian normal coordinate system

ds

2

= �dt

2

+ g

ij

dx

i

dx

j

the Einstein �eld equations read

G

00

=

1

2

(R

(3)

+K

2

�K

ij

K

ij

) = �T

00

G

0i

= K

j

i jj

�K

;i

= �T

0i

G

i

j

=

_

K

i

j

+KK

i

j

+G

(3)i

j

� �

i

j

(

_

K +

1

2

K

2

+

1

2

K

kl

K

kl

) = �T

i

j

where

K

ij

=

1

2

_g

ij

; K = K

ij

g

ij

=

1

p

g

(

p

g)

�

;

and � = 8�G=c

4

.

Taking the trace of the G

i

j

equation and combining with the G

00

equation gives the

well-known Raychaudhuri equation [20]

_

K +K

ij

K

ij

+

1

2

�(� + 3P ) = 0: (1)
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This equation is of great importance for singularity theory because combining the strong

energy condition with the fact that we always have the inequality K

ij

K

ij

>

1

3

K

2

imme-

diately gives us that the metric has a singularity where

p

g ! 0. While in vacuum it is

possible that this singularity is of a purely coordinate kind (for example, where geodesics

of the Gaussian congruence start to cross each other), for simple matter models such as

irrotational dust where � / (

p

g)

�1

the singularity must be essential since a curvature

invariant become in�nite there.

Vacuum dominated singularities

In a famous series of papers by Belinskii, Khalatnikov and Lifschitz [21, 22] it was pos-

tulated that near the cosmological singularity one may reasonably expect the metric to

have the form

g

ij

� t

2p

1

`

i

`

j

+ t

2p

2

m

i

m

j

+ t

2p

3

n

i

n

j

where `

i

,m

i

, n

i

and p

i

are functions of the spatial coordinates x

1

; x

2

; x

3

, and the exponents

p

i

satisfy the Kasner conditions

p

1

+ p

2

+ p

3

= p

2

1

+ p

2

2

+ p

2

3

= 1: (2)

This behaviour is found on setting T

�

�

� 0 and G

(3)�

�

� 0 which, if exactly true, would

result in the Kasner Bianchi type I vacuum solutions. The condition T

�

�

� 0 essentially

postulates that near the singularity the metric should be vacuum dominated, i.e. the

dynamics should be dominated by the ambient gravitational �elds rather than the matter.

On the other hand the second condition G

(3)�

�

� 0 says that the metric should be velocity

dominated, a condition which certainly holds true in FRW models where curvature e�ects

become negligibly small as we approach the singularity.

Nobody knows how general these assumptions are. The papers in this series also leave

some serious mathematical questions regarding their rigour. One particular oversimpli-

�cation seems to be the assumption that the singularity occurs at t = 0, i.e. that the

initial singularity occurs at the same time for all particles of the cosmic 
uid. A detailed

criticism of these papers has been given by Barrow and Tipler [23].

Velocity-dominated singularities

The case of velocity-dominated singularities (without any speci�c regard to the vacuum-

dominated condition) was discussed by Eardley, Liang and Sachs for the particular case

of irrotational perfect 
uid [24, 25]. In the case of irrotational dust (zero pressure) they

found that

g

ij

� (t� t

0

(x))

p

i

(t� t

1

(x))

q

i

�

ij

where q

i

=

2

3

� p

i

, and the p

i

satisfy the Kasner conditions

3

X

i=1

p

i

=

3

X

i=1

p

2

i

= 1 (=)

3

X

i=1

q

i

=

3

X

i=1

q

2

i

= 1):
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The density has the behaviour

� �

1

(t� t

0

(x))(t� t

1

(x))

:

These solutions behave just like the Bianchi type I cosmological solutions known as the

Heckmann-Sch�ucking solutions [26]. When the \bang-time" t

0

is constant the solutions

either become vacuum-dominated and Kasner like (essentially the case discussed above)

or they become matter-dominated and FRW-like in their behaviour.

Diagonal dust

The above discussions provide some fairly detailed descriptions of cosmological behaviour

near the singularity, but one is left wondering exactly how general they are. In particu-

lar, is there a generic class of solutions which are either matter-dominated or curvature-

dominated or both?

A detailed analysis of dust without assuming the metric to be velocity-dominated or

vacuum-dominated [27] shows that in the diagonal case

ds

2

= �dt

2

+ e

2�

dx

2

+ e

�

dy

2

+ e




dz

2

where

e

2�

� (t� t

0

(x))

2p

1

(x)

e

2�

� (t� t

0

(x))

2p

2

(x)

e

2


� (t� t

0

(x))

2p

3

(x)

the generic behaviour (generic meaning here that @t

0

=@x

i

6= 0 in more than one direction)

is (p

1

; p

2

; p

3

) = (0; 0; 1).

This example indicates that the generic behaviour of an inhomogeneous singularity is

that it has quasi-regular behaviour such as that associated with a shell cross or emergence

through a pancake. Such singularities are typically what we expect to happen after the

big bang or \true" cosmological singularity. It seems to indicate that a strong enough

matter singularity cannot be too strongly inhomogeneous.

3.3 Redshifted and blueshifted singularities

Another class of problems relates to the redshift properties of inhomogeneous models. As

is well known, the light from particles of 
uid emerging from a FRW model is in�nitely

redshifted, making this singularity relatively \benign". In the cases discussed above all

models except those having FRW-like behaviour or having (p

1

; p

2

; p

3

) = (0; 0; 1) will

display an in�nite blueshift in one direction (the x

1

-direction if we take p

1

� p

2

� p

3

,

since this implies p

1

< 0).

How are we to describe the redshift or blueshift properties of a cosmological model?

The redshift is something which is not an intrinsic property of a space-time manifold, but
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is rather the property of speci�c vector �elds on that manifold. A geometrical procedure

for discussing redshifts may be carried out as follows

1

.

Consider a space-time M enveloped by a larger manifold

c

M , and let U be any open

subset of M . Let v

�

be a unit timelike vector �eld (v

�

v

�

= �1) de�ned on U . At any

point p 2 U let k

�

be a null vector, then we de�ne the Hubble index of the vector �eld v

�

at p in the direction k

�

to be

H

def

=

v

�;�

k

�

k

�

(v

�

k

�

)

2

:

The reason for the adoption of this name is as follows. Set k

�

= �(v

�

+ e

�

) where e

�

is

a unit spacelike vector orthogonal to v

�

, i.e. e

�

v

�

= 0, e

�

e

�

= 1. It is a straightforward

matter to show that the redshift at p in the direction e

�

over a short distance �` is to �rst

order

z = H�`;

Hubble's law with \Hubble constant" H. Of course there is nothing \constant" about H

as it depends both on the position p and the direction e

�

, but the analogy is clear.

If we de�ne the standard kinematic quantities shear, expansion, rotation and acceler-

ation of the vector �eld in the usual way

v

�;�

= �

�;�

+

1

3

�h

�;�

+ !

�;�

� _v

�

v

�

then

H = �

��

e

�

e

�

+ _v

�

e

�

(3)

where �

��

= �

�;�

+

1

3

�h

�;�

.

The �rst term on the right hand side of equation (3) can be thought of as a purely

Doppler shift, giving three principal Hubble constants �

1

, �

2

and �

3

de�ned by the three

principal directions of the tensor �

��

. This is the entire redshift picture (blueshifts oc-

curring if any of the �

i

are negative) for a geodesic vector �eld, _v

�

= 0. It is interesting

to note that the second term on the right hand side of equation (3) accounts for \grav-

itational redshifts" such as occur in the Schwarzschild solution when we take the vector

�eld v

�

to be along the static Killing direction. It is not unreasonable then to think of

the two terms on the right of equation (3) as being a Doppler shift and a gravitational

shift respectively.

Consider now the case where U has an essentially singular boundary point q 2

c

M , a

representative of an abstract boundary point as discussed above. Choose the vector �eld

to be the principal timelike direction of the energy-stress tensor (assuming it exists),

T

�

�

v

�

= ��v

�

:

We will say then that the cosmological singularity [q] has bounded Hubble index if along

any integral curve 
(t) of v

�

which approaches q as t! t

0

, the Hubble indexH is bounded

below on the sphere of directions around 
(t) as t ! t

0

. Otherwise we will say that the

1

This is work done with K. Newman.
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singularity has an in�nite blueshift. The latter is the case that either �

i

! �1 for

some i or the acceleration vector _v

�

becomes in�nite in magnitude for some integral curve


(t)! q.

For a Kasner type metric

ds

2

� �dt

2

+ t

2p

1

dx

2

+ t

2p

2

dy

2

+ t

2p

3

dz

2

we have for the geodesic vector �eld v

�

= (1; 0; 0; 0),

�

i

�

p

i

t

;

which has an in�nite blueshift in general as t! 0. The only exceptional case is (p

1

; p

2

; p

3

)

= (0; 0; 1) which has bounded Hubble index. As discussed above, it appears that this is

also the generic behaviour of diagonal dust. While diagonal dust is very special what the

analysis seems to be telling us is that blueshifted singularities have some kind of inherent

instability, and that the only models with in�nite redshifts in all directions (\benign

singularities") must be asymptotically FRW in their behaviour.

Another line of argument provided by Penrose [28], but based on thermodynamic

principles also favours the idea that the universe should have an FRW-like origin. In

Penrose's view it is the Weyl tensor which should have vanishingly small components

(possibly related to a state of minimum entropy) near the cosmological singularity. Such

a singularity is sometimes known as an isotropic or conformal singularity. Penrose's

conjecture has come to be known as the Weyl Curvature Hypothesis. A considerable body

of work has gone into showing that perfect 
uid models which satisfy this hypothesis

are constrained to be FRW [29, 30, 31, 32, 33]. A further natural question to ask is the

following:

Does an in�nite redshift singularity imply that it is a conformal singularity,

and consequently if it is a perfect 
uid does it imply that the universe is at

least in an asymptotic sense necessarily FRW?

4. Conclusions

Singularity avoidance and singularity acceptance are in a sense not totally exclusive strate-

gies, at least not if one regards singularities as merely describing the asymptotic math-

ematical behaviour of space-time in the classical regime. Every theory has limits to its

regime of validity, and general relativity has long been recognised as unlikely to be correct

as one approaches the Planck era.

Singularity theory is still worth pursuing as it provides us with valuable informa-

tion about our universe down to the quantum boundary. This boundary is a fuzzy

area, perhaps characterised �rstly by the breakdown of thermodynamics, as suggested

by Bekenstein. As we proceed further into the pre-classical era, the continuum structure

of space-time breaks down into some kind of discrete structure, but the physics is at

present completely unknown. This preclassical era is possibly one of total chaos, but the
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emergence of such classical concepts such as time as a statistical quantity de�ned on the

discrete structure [14], may leave the emergent classical world in a very ordered state. In

accord with Penrose's ideas, this classical world is one of low entropy and must therefore

be approximately FRW.

Time is probably the most interesting of the emergent quantities as we pass from

quantum to classical physics. In the discrete era where neighbourhood-like elements

connect with each other in a fairly random and unordered fashion (see �gure 1) it probably

has no existence at all. Subsequently it \exists most" when entropy is at its lowest at the

beginning of the classical era, and again it loses all meaning in the �nal heat death into

black holes and space-time re-enters a discrete epoch near the collapse singularity. In this

scenario the history of our universe is indeed a history of time.
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