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Abstract

The smoothed particle hydrodynamics (SPH) method has been extensively ap-

plied to predicting the behaviour of compressible Newtonian 
uids for astrophysical

problems. In this paper it is extended to the post-Newtonian (PN) approximation

to the fully general relativistic equations retaining perturbations up to 1=c

2

. An

obvious advantage of this approach is that standard numerical methods for Newto-

nian hydrodynamics can be extended easily to the post-Newtonian equations unlike

the situation for the equations governing general relativity. The post-Newtonian

SPH method has been validated against a number of test cases including relativistic

polytropes and general relativistic hydrodynamical collapse calculations. Prelimi-

nary results have been obtained for the collapse of rotating stellar cores. In general,

the method is applicable to general relativistic astrophysical problems such as stel-

lar core collapse and the coalescence of neutron stars in binaries. Both of these

problems have previously been treated mainly by Newtonian methods.

1. Introduction

With the promise of more sensitive gravitational wave detectors such as the laser inter-

ferometry based systems like LIGO and VIRGO, and improvements in the niobium-bar

technology, such as sapphire sensors, it now seems likely that �nally it will be possible

to detect gravitational radiation from some energetic astrophysical events. The two most

likely candidates appear to be neutron stars in binaries undergoing coalescence and super-

nova, although in the latter case the estimates of the energy carried o� by gravitational

radiation di�er widely between di�erent simulations (Blair & Ju 1996). It is estimated

that the new generation of laser interferometry based detectors, such as LIGO, (e.g., Cut-

ler et al., 1992) could detect about 3 neutron star mergers per year (Narayan, Piran &

Shemi 1991, Phinney 1991), and an advanced LIGO detector could observe perhaps 70

events per year (Finn & Cherno� 1993).

Since these events are certainly strongly in
uenced by general relativistic e�ects it is

not clear that a Newtonian treatment will su�ce. However, there have been problems

with fully general relativistic methods; especially with the development of singularities.

Although a post-Newtonian treatment may not capture the full e�ects of general relativity
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it has some advantages. In particular, the methods developed for solving the equations

of Newtonian dynamics can be easily extended to the post-Newtonian equations, and a

comparison of Newtonian and post-Newtonian simulations will indicate the nature of the

general relativistic corrections.

Gravitational radiation �rst appears in the sequence of post-Newtonian expansions at

order 2

1

2

, i.e., 1=c

5

. Nevertheless, it is important to include this feature for astrophysical

problems since gravitational radiation emissions provide new information about the nature

of extreme astrophysical events. Blanchet et al., (1990) take the view that it should be

included because it represents qualitatively new physics not included at PN order, and it

has a cumulative e�ect which can have an important overall in
uence on the dynamical

evolution of matter. For coalescing neutron stars in a binary, observations of the waveform

over the �nal 1000 orbits can provide accurate indirect measurements of the masses and

spins as well as the orbital parameters (Lai, Rasio & Shapiro 1993).

For neutron star mergers, considerable e�ort has been expended on developing com-

putational tools to predict the gravitational wave signal during the �nal few thousand

orbits as the frequency changes between about 10 and 1000 s

�1

. This can be achieved

with point mass models for the neutron stars and a high-order PN expansion; including

terms up to O(1=c

6

) or higher (Will 1996). During the �nal stages of the inspiral, when

the size of the orbit becomes comparable with the stellar radii, hydrodynamical e�ects

become signi�cant and the gravitational waveforms provide information about the inter-

nal structure of the neutron stars (as well as general relativistic e�ects). It appears that

narrow-band, special-purpose detectors can determine the waveform during this period

(Meers 1988, Strain & Meers 1991). Even a determination of the maximum frequency

reached will provide information on the radii of the neutron stars and therefore place

constraints on the nuclear equation of state (Cutler et al., 1993).

Various groups have performed neutron star coalescence calculations using a variety

of computational techniques. Lai, Rasio & Shapiro (1993, 1994abc), constructed and

used compressible generalisations of theDarwin-Riemann classical ellipsoidal distributions

to study the �nal stages of the evolution. They also crudely included some �rst-order

general relativistic e�ects. A number calculations have been performed with Newtonian

�nite-di�erence codes and have concentrated on gravitational radiation emission. These

have employed a polytropic equation of state and gravitational radiation is included by a

backreaction formula (Oohara & Nakamura 1989, 1990, Nakamura & Oohara 1989, 1990

and Shibata, Nakamura & Oohara 1992). Calculations have been performed with non-

relativistic SPH codes (Rasio & Shapiro 1992, Davies et al., 1994, Zhuge, Centrella &

McMillan 1994), the latter including a calculation of the gravitational radiation signature

using the quadrupole formula. Ru�ert, Janka & Schaefer (1995) have also performed

Newtonian simulations with a code based on the piecewise parabolic method. Finally,

Wilson, Matthews & Marronetti (1996) performed preliminary simulations based on a

method which includes most of the e�ects of general relativity. For these simulations, the

neutron stars collapse to black holes prior to the �nal merger.

Apart from neutron star coalescence, another likely candidate for signi�cant gravita-
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tional wave emission, is stellar core collapse, either from supernova explosions or accretion-

induced collapse of white dwarfs. The scenario here seems much more uncertain as it

depends on whether axisymmetry is maintained during the evolution. Thompson (1984)

and more recently Houser, Centrella & Smith (1994), have used an SPH code to show

that for certain di�erentially rotating stellar cores with a polytropic equation of state, the

core undergoes a bar instability. The latter paper shows that the gravitational radiation

amplitude is large enough to be detectable with the new generation of gravitational wave

detectors for sources within the galaxy.

The aim of this paper is to demonstrate how the post-Newtonian equations can be

treated in the context of the SPH method. Actually, a post-Newtonian version of the SPH

method was �rst developed some time ago (Thompson 1984) and applied to the simulation

of the collapse of rotating stellar cores. At that time the computations su�ered from lack of

resolution due to limited computational speed|typically restricting the particle number

to only 500. Even so, for di�erentially rotating initial models, a bar instability developed

in agreement with subsequent simulations (e.g., Houser, Centrella & Smith 1994, Lai &

Shapiro 1994). Since then computer speed has increased by three orders of magnitude

which has made it possible to achieve acceptable resolution for such simulations even on

workstations.

2. The Post-Newtonian Equations

The particular form described in this paper are due to Chandrasekhar (1965) and are

appropriate for an ideal 
uid. These approximate equations are expansions in the pa-

rameter 1=c

2

(where c is the speed of light). The zeroth order equations give Newtonian

hydrodynamics while retaining the �rst-order terms gives the PN approximation. The

equations governing conservation of baryon number, internal energy and momentum, can

be expressed as
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the PN potentials are de�ned by
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The remaining variables represent

� rest mass density,

�

�

baryon mass density,

v

�

� component of three velocity,

� speci�c thermal energy,

P pressure,

U gravitational potential,

G universal gravitational constant,

c speed of light.

To express the LHS of the momentumequation as a total time derivative and to remove

the second-order partial time derivative term from the RHS, the following relationships

are useful:
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In deriving these equations, any perturbations of order higher than 1=c

2

have been consis-

tently ignored. In addition, the pressure force term has been expressed in a form resulting

in discrete momentum, angular momentum and energy (for h constant) conservation in

the SPH approximation.

The `mass' conservation equation is based on the variable �

�

rather than �. The former

is just the baryon number density times the mass per baryon. Thus the kernel estimation

procedure underpinning the SPH method must be based on �

�

rather than �.

The post-Newtonian mass is de�ned as

M

�

=

Z

�

�

(x)dx

and is conserved. Consistent with the Newtonian SPH method, the (PN) density (�

�

) can

be approximated by

�

�

(x) =

M

�

N

N

X

j=1

W (jx� x

0

j

j; h):

Estimates for other variables can be made in the usual way. For example, the density can

be approximated by
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The PN potentials, U , U

�

and �, (and the forces) can be evaluated by replacing the

source terms in the Poisson equations by their SPH estimates and integrating exactly

(once the functional form of the kernel is chosen explicitly). Similarly, the PN potentials

	

�

can be treated in a similar fashion, but starting from the integral expression rather

than a Poisson equation. A complication is that the source terms depend on � rather

than �

�

. This means that the source term for the potentials involve the gravitational

potential U and the velocity �eld. In practice, these contributions should be small if the

PN approximation is valid. They can be treated numerically by iterating or predicting the

contribution from a previous timestep using an Adams-Bashforth type predictor. This

latter approach has been adopted for the current implementation. This complication is

part of a more general problem associated with the PN approximation and GR in general.

That is, the problem of setting up initial conditions for a simulation. With the current

form of the momentum equations, initially the time derivatives of �, U

�

and (U

�

�	

�

) are

unknown. In addition, as mentioned previously, the source term for the Poisson equation

for U depends on U and v

2

. For core collapse simulations these are not serious problems

because at white dwarf densities the PN corrections are negligible. On the other hand,

for neutron star coalescence simulations, the neutron stars themselves are moderately

relativistic and consequently these PN corrections cannot be ignored. In that case, the

initial conditions need to be computed �rst by iteration.

For the validation studies described in this paper, a variable timestep leap-frog scheme

was used for the time integration. An arti�cial viscosity term was added to the pressure

force (Lattanzio et al, 1984) to limit particle interpenetration and to handle shocks.
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For core collapse simulations the length scale changes by two orders of magnitude. To

maintain resolution the smoothing length was varied with time, typically it was chosen to

depend on the reciprocal of the gravitational potential energy. In general, the smoothing

length can also be a function of space.

3. A Static Test: Computation of Equilibrium Polytropes

This test case has been used extensively in the past to validate Newtonian SPH codes.

For the GR case, Tooper (1964) derived the exact solutions for spherically symmetric

equilibrium con�gurations using a polytropic equation of state. That work relied on

the equation of hydrostatic equilibrium for a spherically symmetric star �rst derived by

Oppenheimer and Volko� (1939) in the form

dP

dr

= �

(�+ P )(m+ 4�r

3

�)

r(r � 2m)

:

Here, the symbols have the same meanings as for the PN equations described above, � is

the 00 component of the energy-momentum tensor, which includes the rest-mass density

and internal energy contributions, and m is the interior mass. The polytropic equation is

of the form

P = ��

1+

1

n

;

where n is the polytropic index. The exact solutions can be computed simply by integrat-

ing out from the centre of the polytrope assuming scaled density of unity and zero density

gradient. GR polytropes are governed by a parameter �

�

= P

c

=(�

c

c

2

), with the subscript

c referring to central values. This is a measure of the in
uence of general relativistic cor-

rections and is closely related to the maximumspeci�c thermal and gravitational energies.

SPH polytropes are constructed by the dividing total PN mass equally between the

SPH particles, adding a damping term and letting the particles settle under the in
uence of

the forces acting. As with Newtonian SPH polytropes the central density is not necessarily

unity. However if the central density is rescaled to unity and the radial coordinate adjusted

to preserve the total mass, a direct comparison can be made.

Figure 1 shows such a comparison for PN polytropes for various values of �

�

. (The

Newtonian case corresponds to �

�

= 0.) For �

�

= 0:0 and 0.05 the density pro�les

calculated directly from the equation of hydrostatic equilibrium and the SPH results

agree to within graphical error. At �

�

= 0:10, there is a slight di�erence between the

curves. For that case the maximum gravitational potential is 0.22 c

2

so the PN equations

may not be an adequate description of GR anyway. The Newtonian result is shown on

the same axes for comparison to demonstrate the substantial in
uence of GR for this �

�

.

4. A Dynamical Test: Comparison with Van Riper Collapse Calculations

Van Riper (1978,1979) investigated the e�ects of general relativity on bodies close to

(Newtonian) neutral stability. He examined the collapse of n = 3 polytropes using both
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Figure 1: Comparison of PN SPH and exact density pro�les for di�erent values

of the PN parameter �. For � = 0, 0.02 and 0.05 the exact and SPH calculations

agree to graphical accuracy. For the most relativistic case, � = 0:10 there is a

slight di�erence. In that case the non-relativistic pro�le is shown for comparison.

a Newtonian and GR spherically symmetric hydrodynamical code. Such models have

obvious relevance to the collapse of stellar cores as they reach the Chandrasekhar limiting

mass.

The procedure used was as follows. A 1.4 solar mass polytrope star with a central

density of 4:0�10

9

g/cm

3

, (modelling a precollapse degenerate stellar core at the stability

limit), was suddenly forced to collapse because of a reduction in the pressure force by a

factor of d, only slightly less than unity. A typical parameter characterizing the behaviour

as a function of d was the time taken to reach a central density of 10

12

g/cm

3

. Newtonian

and GR predictions were compared.

As a validation of the PN SPH code some of these runs were repeated. Three di�erent

pressure reduction factors were used. Table 1 shows a comparison of the results obtained

by Van Riper, and both a Newtonian and PN SPH code. The particle number was limited

to 400 for these runs. Even so, the SPH predictions are typically within about 10% for

both the Newtonian and GR cases.

This is a sensitive test for SPH because the pressure and gravitational forces are only



20 M.C. THOMPSON & J.J. MONAGHAN

out of balance by a factor (1�d) which ranged between 0.15 and 0.54%. The extra `forces'

due to the general relativistic corrections therefore play a signi�cant role; especially in

the later stages of the collapse. Also, it should be borne in mind that the SPH code is

fully three-dimensional, while the Van Riper models are one-dimensional.

Pressure Reduction factor d model type collapse time (msec)

Van Riper SPH

0.9985 Newtonian 1478 1360

GR 643 740

0.9965 Newtonian 1046 950

GR 589 640

0.9946 Newtonian 854 770

GR 547 570

Table 1

5. Other tests

Other validation studies have been performed such as general relativistic periastron ad-

vance and duplication of the collapse simulations of May and White (1966, 1967), but

these will not be described here. For those and the comparisons presented in this paper,

only a small number of particles was used (typically 500-1000). Despite this, the SPH pre-

dictions were typically accurate to within about 10% of the literature or accepted values,

consistent with the error expected from using a limited number of particles.

6. Recent Improvements

Since the time when this version of PN SPH was developed (readily accessible) computers

have increased in computational speed by perhaps a factor of 1000. At the time of

development, standard techniques like tree and multipole methods for computing the

force terms were less e�cient than direct summation due to the small number of particles.

However, with present desktop workstations, preliminary results indicate that using tree-

codes for the gravitational force terms and potentials on standard workstations, it should

be possible to use approximately 50000 SPH particles for simulations of core collapse or

neutron star mergers.

Tree codes work by grouping neighbouring distant particles together and computing

the gravitational e�ect in terms of the �rst few terms of a multipole expansion. Close

particles are still treated by direct summation. In fact, this is done in a hierarchical

manner using a tree in which groups of neighbouring particles are subdivided into smaller

groups (which are further subdivided, etc) and for each group the �rst terms of the



POST-NEWTONIAN SMOOTH PARTICLE HYDRODYNAMICS 21

multipole expansion are calculated. In evaluating the contribution to the gravitational

force for each SPH particle, the tree is ascended and for each group of contributing

particles the error induced by using the truncated multipole expansion instead of direct

summation is computed. If the error is acceptable then the multipole expansion is used,

else the tree is ascended (to the next highest level) and the comparison is repeated. If

the highest level is reached and the multipole error test fails, direct summation is used

for that group of particles.

An advantage of tree codes over grid-based fast Poisson solvers, such as multigrid, is

in their ability to control the error more precisely. For grid-based solvers, the mass of each

particle is e�ectively smeared over a grid cell and the grid resolution will clearly in
uence

the `smoothing of the particles: it is di�cult to quantify the e�ect on the accuracy. With

a tree code, the (SPH) smoothing of the particle potential can be included directly, so

the error is due only to the neglect of higher-order multipole moments from groups of

particles at a distance. The maximum acceptable error can be set explicitly. A further

advantage is that tree codes can solve for variables which do not satisfy Poisson equations

just as easily, such as the PN potential 	.

Tests indicate that for a variety of particle distributions, the (Newtonian) gravitational

forces can be calculated an order of magnitude faster with a tree-code than by direct

summation. In this case the maximum pointwise error was at most only a few tenths of

a percent. Since the PN force corrections are required to be small relative to Newtonian

forces, it is acceptable to allow a larger fractional error for those terms which, in turn,

signi�cantly reduces the relative computer time requirements.

7. Conclusions

A version of the SPH method based on the post-Newtonian expansion has been developed

and validated against both static and dynamic general relativistic test cases. Even with

limited particle number the predictions are generally accurate to within about ten percent.

Fast Poisson solvers, such as tree or multipole codes can be used to calculate both the

Newtonian and post-Newtonian force contributions. This will allow good resolution to be

achieved for problems such as neutron star coalescence and stellar core collapse.
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