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Abstract

A brief history of quantum gravity will be reviewed in this talk. Various aspects of

quantum gravity ranging from the failure of perturbative treatments to the alternative

formulations of quantum gravity such as supergravity and superstrings will be discussed

at an informal level. The main emphasis of this review will be on the loop representation

of non-perturbative quantum gravity.

1. Introduction

It is known since early this century that general relativity is incompatible with quan-

tum theory. The incompatibility is indeed more profound than the fact that gravity is

perturbatively non-renormalisable in the covariant quantisation scheme. It ultimately

lies in the rôle in which space and time play in general relativity and quantum theory.

This is a rather subtle issue and is undoubtedly the main culprit that de�es various

quantisation approaches to gravity. A less conceptually subtle issue is, of course, the

non-renormalisability of gravity. This is more of a technical issue than a conceptual

one. It arises from the attempt to depict gravity as another �eld de�ned on Minkowski

space-time. Here, the problem encountered is primarily due to the presence of a dimen-

sionful coupling constant|the Gravitational constant|(resulting from the Principle of

Equivalence) that prevents the construction of a predictive quantum theory of gravity.

Indeed, the advent of quantum �eld theory led invariably to valiant attempts in quan-

tising Einstein's theory of gravitation. All of which proved futile. Perhaps Isham [25,

p. 8] was on the right track all along when he remarked that rather than quantising

gravity, one should seek a quantum theory which yields general relativity as its classical

limit. But then, the main obstruction here is the lack of a starting point to construct

such a quantum theory.

By assuming that quantum theory is the underlying principle governing the be-

haviour of nature at the fundamental level, it is then almost inevitable that a quantum

theory of gravitation should exist.

1

Perhaps a more pertinent question to be raised at

this juncture is the following: why quantise gravity in the �rst place? First, there are

1

It will be assumed tacitly that quantum laws are the fundamental laws that govern at the micro-

scopic level.
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issues in quantum cosmology|such as the quantum e�ects of black holes due to their

intense gravitational �elds|which cannot be fully addressed without a consistent theory

of quantum gravity. Second, it is hoped that a theory of quantum gravity will clear up

various enigmatic questions such as the structure of space-time at a microscopic level,

causality (and hence the arrow of time), and possibly even account for the presence of

singularities in classical space-times [36, Chapter 8, p. 256] established by Hawking and

Penrose. These questions provide rather strong incentives for constructing a theory of

quantum gravity.

An early e�ort at quantising gravity was made by Rosenfeld in 1930 [48, 49]; needless

to say, he headed rapidly into insurmountable technical di�culties! This is hardly sur-

prising since it is now well known that pure gravity is perturbatively non-renormalisable

at the 2-loop level and non-renormalisable at the 1-loop level when coupled with mat-

ter �elds. Indeed, a simple power counting argument will quickly predict the non-

renormalisability of gravity. In the early 1960's, Weinberg studied the quantum aspects

of general relativity within the framework of S-matrix theory [61, 62], but his work

was hindered by hideous non-linearities encountered in Einstein's �eld equations. His

task was continued by Boulware and Deser [22] who showed in detail that, provided

that the long range interactions of gravity are mediated by massless spin-2 particles, in

the S-matrix formulation, general relativity is indeed the classical limit of the quantum

theory. However, their calculations were done in the low-frequency domain.

In a paper by 't Hooft [57], it was demonstrated that pure gravity is 1-loop renormal-

isable but when coupled with matter, the theory ceases to make sense perturbatively.

Speci�cally, Deser and Nieuwenhuizen showed that the Einstein-Maxwell �elds diverge

at the 1-loop level [27] and the quantised Einstein-Dirac system also diverges at the 1-

loop level [26]. In a recent paper by van de Ven [58], the 2-loop non-renormalisability of

covariant quantum gravity was proved explicitly. And to make matters even worse, aside

from the technical issues of non-renormalisability, more conceptually profound questions

posed|just to mention a few|by Wheeler regarding measurement [24, p. 224], and

the issue of causality|cf. for example, references [15, 40]|must also be explained in a

satisfactory manner by any candidate theory of quantum gravity.

An initial motivation for quantising gravity lay in the hope that it might eliminate

the divergences that exist in quantum �eld theory|unfortunately, not only is such a

hope dashed, but using perturbative methods gravity cannot be renormalised. This

clearly suggests that the conventional means of quantising gravity, that is, the use of

(perturbative) covariant quantisation, is not the right approach; or perhaps quantum

theory is ultimately not a complete theory but merely an approximate theory describing

the behaviour of nature at the fundamental level. Having said this much, this speculative

note will not be pursued any further in this dissertation. However, the failure of gravity

to be quantised perturbatively does not necessarily mean that a theory of quantum

gravity fails to exist.

Quantum �eld theory demands that the background metric of space-time be �xed

and that Poincar�e-invariance be preserved.

2

Moreover, it assumes the smoothness of

2

This is required in order for energy and momentum to be conserved locally.
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the underlying space-time manifold. In quantum gravity, the metric itself becomes a

dynamical variable and the gauge group is no longer the Poincar�e group but the group

of smooth di�eomorphisms. Also, it is worthwhile pointing out that quantum gravity,

should it exist, ought to determine (or at least, predict) the structure of space-time at

the Planck scale and below|assuming the smoothness of space-time certainly defeats

this very purpose. Furthermore, the presence of quantum 
uctuations of space-time

geometry might well destroy its smooth structure. Indeed, a number of researchers in

this �eld, Penrose [30, p. 4] or [47, p. 31] in particular, are quite convinced that the

smoothness of space-time geometry at very small distances must be sacri�ced. Some

researchers go a step further and toy with the idea that perhaps even topology itself

ought to be quantised, whatever such a statement might imply. At least, the motivation

for such an observation is that perhaps, at the Planck scale, 
uctuations in the spatial

topology (of space-time) might occur, resulting in a space-time foam structure. For

an account of space-time foams, refer to Hawking's paper [35]. Initial moves towards

topological quantisation was initiated in a rigorous way by Isham et al. [39]. A rather

eloquent (and convincing) argument outlining the need for a non-perturbative approach

to gravity can be found in a monograph by Ashtekar [1, p. 3]; consult also references

[55, x1], [31, p. 327] and [4].

2. Supergravity Theories

It should be pointed out that perturbative covariant quantisation of gravity (which

failed to succeed anyway!) and the Ashtekar's quantisation programme are not the

only means of tackling the problem of quantising gravity. There are others besides

those two such as the Kaluza-Klein theory which currently seems to have gone out of

favour amongst researchers working in the mainstream of quantum gravity. Probably

the two most well known ones are supergravity and superstring theory. Incidentally,

they were also candidates for a Uni�ed Field theory. Curiously enough, string theory

was originally conceived to provide an explanation for the behaviour of hadrons and not

to quantise gravity!

Supersymmetry is the underlying principal ingredient in supergravity and super-

strings. Roughly, it describes a transformation between bosonic �elds and fermionic

�elds. Indeed, supersymmetry can only be implemented if space-time is curved! An

heuristic argument outlining the equivalence between the presence of gravity and the

implementation of local supersymmetry can be found in [59, p. 201]. This fact alone

is suggestive that perhaps quantising gravity requires the uni�cation of fundamental

forces of nature. An excellent review article on supergravity can be found in reference

[59].

In supergravity theories, each bosonic �eld has its fermionic counterpart (and vice

versa). The fermionic partner of gravitational �eld is a spin

3

2

�eld called the gravitino.

If there are n 5 8 gravitinos, the theory is called an N = n supergravity theory. N = 0

corresponds to general relativity theory. If N > 8, �elds of spin

5

2

(and higher) enter

into the picture and this includes several spin 2 �elds as well. However, the coupling
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of spin

5

2

to gravity and to �elds of di�erent spins are known to be inconsistent, and

no satisfactory coupling of �elds with spins greater than 2 exists. Hence, N cannot be

greater than 8.

In N = 1 supergravity theory, bosons and fermions (which occur in pairs) form

irreducible representations of a supersymmetric algebra

3

|these are the spin (2;

1

2

) dou-

blets (i.e., the graviton-gravitino system), the spin (1;

1

2

) doublets (the photon-neutrino

system) and the spin (0;

1

2

) doublets. It is a feature of the theory that as many mat-

ter doublets may be added to the spin (2;

3

2

) doublet as desired: in doing so, say, by

adding one or more spin (1;

3

2

) doublets to spin (2;

3

2

) doublets, one obtains the extended

(N = 2; : : : ; 8) supergravity theories. These theories possess N Fermi-Bose symmetries

(plus the usual space-time symmetries of course),

1

2

N(N � 1) spin 1 real vector �elds

and �elds of lower spins. Moreover, they also have a global U(N) group whereby the

fermions rotate into themselves, and an O(N) subgroup which rotates bosonic �elds into

themselves. In this way, the graviton|inN-extended supergravity theories|is replaced

by a new superparticle whose \polarizations" yield gravitons, quarks, photons, graviti-

nos, leptons. This uni�cation of particles into one superparticle leads to the uni�cation

of forces.

The ultra-violet divergences appearing in supergravity theories seem to be much

better behaved. For instance, the in�nities in the S-matrix in the �rst and second order

quantum corrections cancel due to the symmetry between bosonic and fermionic �elds.

Nonetheless, even the presence of supersymmetry is not su�cient to guarantee �niteness

at all loops|at least, there are no conclusive proofs that supergravity is perturbatively

renormalisable [32]. Indeed, there are strong reasons to suspect that in 4-dimensional

space-time, supergravity theories will diverge at the 3-loop level [43]. Hence, it too is

not a particularly successful theory of quantum gravity. Moreover, only N-extended

matter may be coupled to N-extended supergravity.

3. Superstring Theory

Superstrings paint a more optimistic picture than supergravity theories. However,

one now requires a 10 dimensional space-time with supersymmetry built in. In spite

of that, gravity is a necessary ingredient in order for a consistent quantum theory of

superstrings to exist. From this viewpoint, strings as fundamental quanta are strongly

supported by the presence of gravity. An introduction to Superstrings can be found in

reference [25, p. 301] by Schwarz or Kaku [42]. Hitherto, it is the only candidate for

a Uni�ed Field Theory. Supergravity is now understood to be the low-energy limit of

superstring theory. More on this matter will be broached in the next paragraph.

In the theory of Superstrings, the fundamental objects are extended 1-dimensional

objects called strings. The strings can either be open (i.e., a curve) or closed (i.e., a

loop). In short, this extension enables ultra-violet divergences appearing in the Feyn-

man diagrams to be removed. There are two basic types of string theory: the type I

superstring theory, wherein the strings are unoriented, and type II in which the strings

3

Very brie
y, this is an algebra with both commutation and anticommutation brackets.
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are oriented. The latter is also known as heterotic superstrings. Type II closed su-

perstring theories have N = 2 supersymmetry and hence contain N = 8 supergravity

modelled on a 4-dimensional space-time as a limiting case. Informally, supergravity lies

in the zero-mass sector of closed superstring theory. There, supergravity is quadrati-

cally divergent at the 1-loop level whereas its corresponding superstring theory is �nite.

Strings can interact by joining two ends (for open strings), or by breaking at an \inte-

rior" point (in the case of a loop) to form an open string. The latter is demanded by

causality simply because two ends of a string must \decide" to interact at once without

determining �rst whether they belong to the same string or not.

The inclusion of supersymmetry to string theory means that, aside from general

relativity and Yang-Mills theory being included in it, supergravity and GUT are also

included in this theory! However, in spite of such grandiose achievements, perturbative

approach to superstring theory is plagued with problems [42, p. 285]. Only three major

problems will be listed here:

(i) the low energy mass spectrum is still wrong;

(ii) the theory cannot select the true vacuum amongst the host of possible conformal

�eld theories;

(iii) although supersymmetry is preserved to all orders in perturbative theory, it

must be broken down in the low energy r�egime.

To address these problems, researchers turn towards a non-perturbative approach

to superstring theory. Also, note that for bosonic string theory, the entire sum of the

perturbative expansion diverges [33, 30]. The Ashtekar loop programme takes a more

modest turn: it only seeks to formulate a consistent theory of quantum gravity without

any thought of unifying the fundamental forces. And more importantly, the approach

is non-perturbative from the outset! Indeed, the problems encountered by superstring

theory, which is hitherto the sole candidate for a \proper" Uni�ed Field theory, points

towards a non-perturbative approach. A second important point to observe here is

that the Ashtekar programme asserts that the gravitational �eld can be quantised on

its own without any other �elds, whereas in superstring theory, the very presence of

supersymmetry necessitates the uni�cation of forces in order to produce a consistent

theory of quantum gravity. Quite a strong contrast indeed!

4. Non-perturbative Canonical Quantum Gravity

In this section, a cursory account of the canonical quantisation of gravity, together

with the strengths and shortcomings of the Ashtekar quantisation programme, will be

sketched. To condense the historical development of quantum gravity, it is enough

to point out that from the late 1940's up to the mid-1950's, Bergmann embarked on a

quest to canonically quantise �eld theories which are covariant under general coordinate

transformations [18, 19, 20, 21]; here general relativity is of course a particular case those

theories. He began by doing away with a space-time metric and considered instead a

more fundamental �eld from which the Lagrangian of the theory was constructed. He

quickly discovered that the system possessed constraints. Although his quantisation
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programme was not successfully completed, he nonetheless laid some important ground

work for later researchers. In 1966, a comprehensive analysis of canonical quantum

gravity was eventually carried out by DeWitt [28, 29].

In the canonical formalism of general relativity, covariance is violated and space-time

is split into space and time. The resulting classical con�guration space is the space of

Riemannian 3-geometries with the cotangent bundle over the con�guration space being

the phase space of the system. It will su�ce to note here that the resulting phase space

of the gravitational system is constrained. That is, the physical trajectories in the phase

space lie on a constraint surface de�ned by the Hamiltonian constraint and the di�eo-

morphism constraints. Upon canonically quantising this classical system, the physical

states lie precisely in the kernel of both the quantum Hamiltonian and di�eomorphism

constraint operators. In fact, this is only true for the case when the spatial 3-dimensional

slice is chosen to be compact; in the non-compact case, the wavefunctionals must also

satisfy an additional Schr�odinger equation [25, Eqn (6.1.4), p. 79]. However, only the

spatially compact case will be considered here. Unfortunately, due to the intractability

of the quantum Hamiltonian constraint equation arising from involuted non-linearities,

not a single explicit solution is known. This equation is known as the Wheeler-DeWitt

equation,

4

and the wavefunctional that satis�es it is known broadly as the wavefunction

of the universe.

Approximate solutions were of course found, but this involved truncating the

Wheeler-DeWitt equation so that only a �nite number of degrees of freedom are re-

tained (instead of an in�nite number of degrees of freedom in the full equation); this

gave rise to the theory of baby universes|the mini-superspace approximation. At best,

such solutions o�er researchers a myopic insight into the convoluted nature of gravity.

However, it should be remarked that even if the Wheeler-DeWitt equation can be solved,

there remains the question of interpreting the solutions.

Loosely put, the wavefunctionals describe the physical states of space-time as prob-

ability amplitudes of possible histories. But this implies at once that the concept of

time seems to have vanished from the picture; that is, there is the unpalatable absence

of dynamics, of evolution, of time. This disturbing dissonance is seemingly overcome

by identifying part of the geometry as an \intrinsic" time; then, the Wheeler-DeWitt

equation is interpreted as encoding information that relates to how a wavefunctional

changes with respect to this newly introduced notion of \time". But alas, by intro-

ducing a physical inner product on the Hilbert space of physical states, the integration

integrates over \time" as well! Hence, the problem of time is really not resolved at all.

Time, however it might be interpreted here, is treated very di�erently from quantum

theory. See Isham [25, x6, p. 78] for a lucid but laconic account relating to the problem

of time in this canonical formulation and other related problems arising from quantising

in the canonical formalism.

It should be pointed out that the riddle of timelessness only occurs for the spatially

compact case. When the spatial slice of space-time is non-compact, time is de�ned by a

4

More accurately, the sum of the di�eomorphism and Hamiltonian constraint equation is known

as the Wheeler-DeWitt equation.
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Schr�odinger evolution equation. For a lively assessment of the canonical approach, refer

to [31, x2, p. 330] by Ashtekar. Before concluding this sorry tale, a brief word must

be mentioned on the Hartle-Hawking functional integral approach to Wheeler-DeWitt

equation. Aside from commenting that it yields, heuristically at least,

5

explicit solutions

to the Wheeler-DeWitt equation, it fails to provide any information whatsoever at the

instant of creation. Also, there is the confounded issue of time cropping up time and

time again! It is thus a fervent hope that the problem of time will be resolved with the

formulation of a consistent theory of quantum gravity.

If (2+1)-quantum gravity was not mentioned earlier, then it is simply because it is

essentially an open book! Much work has been done on it. In particular, (2+1)-quantum

gravity is often used as a toy-model for the seemingly intractable (3+1)-quantum gravity.

For more details, see for example reference [63] by Witten|as well as a complementary

paper by Moncrief [45] who made some constructive criticisms regarding the conclusions

drawn by Witten in his paper|and more recent ones such as [44, 11], or a somewhat

refreshing article by Waelbroeck [60] to name just a few out of the plethora of literatures

on (2+1)-quantum gravity.

5. The Ashtekar-Rovelli-Smolin Quantisation Programme

In this section, a very brief summary of Ashtekar's Hamiltonian formulation of

general relativity [2, 3] and the loop representation theory of quantum gravity [52]

will be sketched. The motivation for the Ashtekar formulation of general relativity

is to attempt to simplify and hence solve the Hamiltonian constraint equation arising

from the traditional ADM formalism. Without delving into great detail, �x a smooth,

compact 3-manifold � and consider a Lorentzian 4-manifold M

�

=

� � R, where �

de�nes a co-dimension 1 spacelike foliation on M . The Ashtekar connection 1-form A

is a complexi�ed su

C

(2)-connection 1-form given by

A

a

(x)

A

B

= �

a

(x)

A

B

�

i

p

2

�

a

(x)

A

B

;

where �

a

is the SU(2) spin-connection coe�cients compatible with a triad E on � and

K

a

relates to the extrinsic curvature of � on the constraint surface byK

ab

= �tr�

(a

E

b)

.

The canonical conjugate to A is a densitised SU(2) triad

~

E =

p

det qE of weight 1 on

�. They satisfy the following Poisson bracket relation:

fA

a

(x)

AB

;

~

E

b

(y)

CD

g

def

= �

i

p

2

�

b

a

�

C

(A

�

B)

D

�

3

(x; y):

Recall that a triad relates to a Riemannian 3-metric q on � by det q �q

ab

= �tr (

~

E

a

�

~

E

b

).

In terms of this new pair of variables (A;

~

E), the constraint equations of general

relativity take the following form:

C

1

(A;

~

E) = D

a

~

E

a

= 0;(5.1)

C

2

(A;

~

E) = tr (

~

E

a

F

ab

) = 0;(5.2)

C

3

(A;

~

E) = tr (

~

E

a

~

E

b

F

ab

) = 0(5.3)

5

The in�nite-dimensional measure involved in the integral is not rigorously de�ned.
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where D is the covariant derivative induced by the Ashtekar connection A: D

a

 

M

=

@

a

 

M

+GA

a

M

N

 

N

, G is the Gravitational constant and F

abM

N

is the curvature 2-form

of A

aM

N

. In all that follows, units will be chosen so that G � 1.

Quantising these new variables gives rise to the self-dual representation, where the

state vectors are holomorphic functionals  =  [A] on the space of Ashtekar connection

1-forms. The quantised pair (A;

~

E) is de�ned by

A

a

(x) !

^

A

a

(x);

~

E

a

(x) ! �i

�

�A

a

(x)

;

where

^

A

a

(x) acts on functionals  =  [A] on the space of Ashtekar 1-forms by mul-

tiplication. In brief, Ashtekar's formulation of complex general relativity [3] leads im-

mediately to the connection representation of quantum gravity|the general relativity

formulated in [3] is really \real" general relativity in terms of a complex and a real

variable, the Ashtekar connection and its conjugate momentum respectively.

An advantage of formulating general relativity in terms of connections (the Ashtekar

connection 1-forms) and their conjugates|these are the soldering forms; i.e., \square

roots" of metrics|is that that the conjugate variable need not be invertible! See equa-

tions (5.1){(5.3). This di�ers greatly from general relativity which demands that the

metric be non-degenerate. An obvious conclusion to be drawn from Ashtekar's formula-

tion is that it yields solutions that are more general than those obtained via Einstein's

�eld equations. It is perhaps a somewhat tantalising speculation that Ashtekar's formu-

lation will yield a profound insight into the relation between signature changes in the

space-time metric and the changes in spatial topology of space-time, and perhaps even

more interestingly, how these a�ect quantum gravity. An instructive preliminary analy-

sis regarding spatial topological changes and the degeneracies of Lorentzian metrics can

be found in an article by Horowitz [38]. A related comment, if somewhat premature

at this stage as it pertains to the loop representation to be mentioned shortly below,

relates to an intriguing paper by Smolin [56]: he demonstrated that, using the loop

representation of quantum gravity, the spatial topological changes e�ected by creat-

ing or annihilating a special class of wormholes|what he calls minimalist wormholes,

which are created by identifying pairs of distinct points on the spatial 3-manifold|is

equivalent to general relativity coupled to a single Weyl fermion �eld!

Another positive spin-o� from Ashtekar's formulation of general relativity is that in

the connection representation, the Hamiltonian constraint is greatly simpli�ed|indeed,

to the extent that some nontrivial solutions can now be found: they are just the Wilson

loops. Unfortunately, Wilson loops are not invariant under di�eomorphisms. For more

details, see [46, p. 12{13] or [41, x7, p. 333]. This startling hitch led to the development

of the loop representation of quantum gravity by Rovelli and Smolin [52]. In the loop

representation, solutions to all the quantum constraints were found|refer to [41, 52]

again.

The loop representation of quantum gravity involves the introduction of a set of

classical T

n

-observables T

a

1

:::a

n

[
;A;

~

E](s

1

; : : : ; s

n

) de�ned as follows:

tr (U


;A

(s

2

; s

1

)

~

E

a

1

(
(s

1

))U


;A

(s

3

; s

2

)

~

E

a

2

(
(s

2

)) : : : U


;A

(s

1

; s

n

)

~

E

a

n

(
(s

n

)));
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where U


;A

(t; s)

def

= Pe

H


(t)


(s)

A

is the spinor propagator of A along 
 from 
(s) to 
(t),

P denotes the path-ordering operator and T

0

[
;A]

def

= trU


;A

. The set of these T -

observables has the following Poisson bracket structure: fT

n

; T

m

g � T

n+m�1

, and

the Poisson brackets re
ect how the loops combine and break at each point where

~

E

is attached. The Poisson brackets are actually singular in the sense that each term

involves a �-distribution of the form

�

a

[
; �](s) =

Z

1

0

dt �

3

(
(s); �(t)) _�

a

(t):

These however turn out to be harmless and they can be smeared away.

In the loop representation, these classical T -observables become linear operators on

the space of multi-loop functionals. The T

0

-observable acts on a multi-loop functional 	

in the following way: (

^

T

0

[
;A]	)(�) = 	[
[�], where 
; � are loops in �. The quantum

T

n

-operators act on loops by breaking and joining them all of the points where

~

E is

attached simultaneously. The details can be found in [52].

Some remarks are due below. First, because the T -observables are SU(2) gauge

invariant|due to the presence of the trace operator|the Gauss constraint, equation

(5.1), present in the connection representation is eliminated automatically on passing

into the loop representation. Second, the di�eomorphism constraint, equation (5.2),

and the Hamiltonian constraint, equation (5.3), can be derived from the T -observables

by de�ning a suitable limiting procedure whereby the loop contracts down to a point.

Third, non-trivial solutions to both the Hamiltonian and di�eomorphism constraints in

the loop representation theory can be solved. And what is more, the theory predicts a

discrete structure at the Planck scale. More of this will be said in the next section.

The loop representation theory was applied to free Maxwell theory with resounding

success [12]. It was later applied to linearised quantum gravity [13] and was shown to cor-

rectly reproduce gravitons. Applications were also made to (2+1)-dimensional quantum

gravity primarily on tori [44] using the connection as well as the loop representation|

the Dirac transformation reveals that they are all equivalent. In the case of (2+1)-

quantum gravity, the loop representation yields a combinatorial picture whereas the

connection representation depicts a \timeless" one. Of course, going over to (3+1)-

quantum gravity is a di�erent matter altogether. There are no local degrees of freedom

in (2+1)-dimensions (due to the vanishing of Weyl tensor), whereas this is no longer

the case with (3+1)-gravity. For other work on (2+1)-quantum gravity in the loop

representation, refer to papers by Ashtekar et al. [6, 11].

6. Discussion

Unfortunately, like most theories in the real world, the loop representation of quan-

tum gravity is not free of problems. There are a number of unresolved issues. One of the

problems of the loop representation was discovered by Br�ugmann and Pullin [23, x4, p.

239]. They noticed with some consternation that solutions of the quantum Hamiltonian

operator represented by products of Wilson loops were also annihilated by a metric
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determinant operator in terms of the Ashtekar variables. It follows as a corollary that

the solutions will also satisfy the Hamiltonian constraints for arbitrary cosmological

constant! A concise account can be found in [46, p. 13{14].

Another disturbing problem of the loop representation lies in the physical inter-

pretation of the theory. Attempts have been made at interpreting the theory in terms

of knots and weaves by Rovelli and Smolin [53, 10]. See also references [64, 65 66]

by Zegwaard. Also, a physical inner product on the multi-loop states is not known:

this is a problem that is intimately tied with the physical interpretation of the theory.

Moreover, there is the pressing issue of de�ning physical observables [40, 51, 5]. Once

again, all of these issues are intertwined; plus, the fact that very little is known about

classical observables in general relativity does very little by way of lighting a path for

ardent researchers. In fact, there is also a minor technical problem with the de�nition

of the space of classical T -observables. Although the space of T -observables supports

a Poisson structure, the space lacks a linear structure altogether|this can be easily

seen by taking two distinct loops 
; � and two points s; t such that 
(s) 6= �(t). Then,

T

1

[
;A;E](s)+T

1

[�;A;E](t) is not even de�ned in the space of classical T -observables.

In short, it is not an algebra. Indeed, with a bit of tedious algebra, it can be shown that

the Poisson brackets do not satisfy the Jacobi identity. Fortunately, it can be shown

that the space of classical T -observables can be imbedded in a suitable linear extension.

The details can be found in reference [68]. It is also shown in the same reference that

the algebra of quantum T -operators is a covering space of the suitable linear extension

of the classical T -observables.

In spite of the various setbacks encountered, Smolin [53, 54] has constructed a

number of interesting observables in quantum gravity: a surface area operator, a volume

operator and an operator that measures the \length" of a 1-form on the spatial slice of

space-time. The spectacular results arising from the �rst two operators are that area

and volume in quantum gravity are quantised in some multiple of the Planck area and

Planck volume respectively! This seems to vindicate the conjecture that the structure of

space-time is discrete at the Planck scale|a conjecture that was established heuristically

by Rovelli [67, x4, p. 1648]. Along this note, Rovelli and Smolin [54] also constructed

a physical Hamiltonian operator (with a cosmological term included) which acts in

essence by breaking and rejoining the points of intersections of loops in di�erent ways.

Moreover, it is also �nite as well as di�eomorphism-invariant. Hope is expressed that

the Hamiltonian operator might encode the full contents of Einstein's �eld equations in

a di�eomorphism-invariant manner.

Returning to other obstacles present in the theory, there are technical matters

such as the construction of a measure on the space of Ashtekar connection 1-forms|

preliminary studies have been made by Ashtekar et al. [7, 8, 9, 16]

6

and by Baez [16,

17]. The construction of an explicit di�eomorphism-invariant measure on the multi-loop

space as well as expressing the reality conditions in the loop variables are issues that

need addressing: the absence of a physical inner product to date are related directly

to these problems. On a whole, the future to the Ashtekar quantisation programme is

6

They constructed a di�eomorphism-invariant promeasure on the space of connections.
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not as bleak as it seems, and aside from its mathematical beauty, it is at present, a

novel approach towards a non-perturbative quantum gravity that has yet to reach an

impasse. Indeed, recently, further progress in the connection representation is made.

Ashtekar et al. [10] performed a detailed study of di�eomorphism-invariant theories

in the connection representation and they found complete solutions to the Gauss and

di�eomorphism constraints for the following class of theories in the connection repre-

sentation: the Husain-Kucha�r model, Riemannian general relativity and Chern-Simons

theories. Furthermore, they were able to endow the space of such states with a Hilbert

space structure, where the inner product of the Hilbert space is compatible with the

reality conditions imposed on the theories.
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