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Abstract

The holonomy loop representation has been utilised in 3+ 1 canonical quantum

gravity so as to provide solutions to the canonical constraint equations. These solu-

tions have a particularly elegant form in that they are solutions within knot classes.

Motivated by this we propose a generalisation of the holonomy loop approach. To

introduce this new approach we employ a more general notion of a Lie gauge group,

namely a Lie gauge groupoid. We discuss the mathematical properties possessed

by a �eld theory with groupoid as opposed to group structure and brie
y discuss

it's advantages and hence our hopes for its applications in solving the problem of

quantum gravity.

1. Overview of quantum gravity

The limitations of modern quantum �eld theory are most apparent in its inability to

model a quantum theory of gravity. This failure manifests itself in the theory's non-

renormalisability and is directly related to the perturbative techniques associated with

quantum �eld theory. As such nonperturbative approaches seem to be the main candi-

dates for enabling the construction of a quantum theory of gravity. The most notable non-

perturbative technique is the holonomy loop representation [1] associated with Ashtekar's

general relativity [2]. Unfortunately this nonperturbative and holonomy dependent ap-

proach has yet to produce a nonperturbative model of even the most simplest interacting

quantum �eld theory, such as quantum electrodynamics. Moreover, it has technical prob-

lems, e.g., ill-de�ned measure, lack of inner product etc, that have not been solved since

the theory's inception.

As such we are motivated to propose an alternative holonomy dependent formulation

of interacting �eld theories and general relativity, which exploits a little know symmetry

called groupoid symmetry. Groupoids provide a convenient way to embody the multiple

symmetries present in interacting �eld theories and lead to a path integral formalism of

the quantum theory.

2. Ashtekar's general relativity

Ashtekar's general relativity is an alternative formulation of Einstein's general relativity.

The motivation behind such an alternative formalism can be summarised as follows:
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{ It provides an unexpected link between general relativity and gauge �eld theory,

in that the physical �eld is not the metric but rather a gauge �eld. As such it sets the

groundwork for unifying general relativity with the other forces.

{ A direct consequence of its gauge nature is that it has lead to the introduction of

gauge techniques into general relativity. The most profound example of this is the loop

representation, utilisation of which leads to a set of solutions to the constraint equation

of the theory.

{ It provides an important mathematical generalisation of general relativity which has

lead to an important extension of the standard Dirac quantisation procedure in such a

manner that reality conditions should lead to a well de�ned inner product on the space

of physical states. Moreover, its generalised formalism results in degenerate and non-

degenerate metric solutions of the equations of motion. A, as yet, unexplored consequence

of this result is with regards to its application to spacetime singularities.

In distinction to the Einstein-Hilbert action associated with general relativity the

action of Ashtekar's general relativity [2] takes on a Yang-Mills 
avour as follows

S[e;A] =

Z

d

4

x e

�I

e

�J

F

IJ

��

�

����

(1)

in which e

I

�

is a tetrad, (i.e., four linearly independent vector �elds), �

����

is a to-

tally antisymmetric tensor, and F

IJ

��

= @

�

A

IJ

�

� @

�

A

IJ

�

+ A

IM

�

A

J

M�

� A

IM

�

A

J

M�

is the �eld strength associated with the self dual gauge �eld connection

A

MN

�

= �

i

2

�

MN

IJ

A

IJ

�

, which is an element of SO(3; 1) ' SL(2; C ). The associated

equations of motion are

�

����

e

�J

F

IJ

��

= 0; (2)

(�

KI

�

LJ

+

i

2

�

KLIJ

)�

����

D

�

(e

�I

e

�J

) = 0; (3)

where D is the covariant derivative. A consequence of the above formalism is that the

metric is no longer a fundamental physical quantity but rather it is a derived quantity.

One can show that if (e

�

I

; A

IJ

�

) satisfy the above equations of motion, then the spacetime

metric which is related to the tetrads by

g

��

= e

�

I

e

�

J

�

IJ

; (4)

is in fact a solution to the Einstein vacuum equations. (Here �
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at Minkowski

metric.)

A canonical ADM{type formulation is obtained by introducing variables
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where a = 1; 2; 3 is purely spatial, and q is the determinant of the 3-metric q

ab
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The action (1) may be rewritten [3]
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The only dynamical variable is the physical triad E
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Lagrange multipliers, leading to the constraints
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Let 
(s) be a parameterised curve in the 3-dimensional physical space with coordinates
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gauge group indices and P means path-ordered, in a sense de�ned in [3]. The holonomy

is a solution to the di�erential equation de�ning parallel transport
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The curve 
(s) is most commonly taken to be closed loop, s 2 [0; 2�], due to conventional

formulations of the reconstruction theorem [4]. The above di�erential equation is subject

to the boundary condition U




(0) = I where I is the identity element of the gauge group

at 
(0).

Inserting the physical triad �eld E
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associated with the ADM version of Ashtekar's

general relativity into the loop associated with the holonomy the following quantity is

obtained
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The two holonomy dependent quantities T and T
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where 
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The classical phase space (A
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) is consequently replaced with loop space in the

holonomy approach. Functionals on such a loop phase space can be obtained from func-

tionals on (A
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) via the holonomy loop representation [1]
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where d�[A] denotes a measure on the gauge connection space. A vector space V can be

formed from such functionals j	[
]i 2 V to construct a physical sector of V of states which

are annhilated when the classical constraints (12) are elevated to operator constraints
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The general form of the solution is

j	[
]i = j	[K[
]]i (22)

where K[
] the generalised knot class of 
 in the spatial three manifold [5].

The loop representation utilised in Ashtekar's general relativity has had substantial

successes [3], but also has some a number of limitations. One serious drawback of this

formalism is that as yet an inner product, h	

1

j	

2

i, on the space of physical states has not

been given, due to the ill-de�ned nature of the measure in (19) { a problem common to

other approaches to quantum gravity. In a limited sense this problem has been overcome

in 2 + 1 dimensional general relativity in which the measure is de�nable in term of link

invariants [6]. Except for this and other simple cases, such as electromagnetism [7],

the loop formulation is not well understood. Furthermore, the approach is intrinsically

canonical and as such arti�cially treats space and time di�erently, which is not in the spirit

of relativity. Due to these drawbacks we are motivated to propose an alternative formalism

in the following section utilising an alternative symmetry to gauge group symmetry called

gauge groupoid symmetry.

3. Groupoid formulation

A Yang-Mills theory is a gauge �eld theory, that is, a theory in which the symmetries of

the theory are encoded into a group, from which a principle �bre bundle P (M;G) can

1

U




(t; s + 2�) is the parallel transport from t to the origin and then from the origin to s.
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be constructed given a base manifold M . For an interacting theory the gauge group is a

product of groups, for example electroweak theory with gauge group

SU(2) � U(1)

or for gauge and matter interactions in quantum electrodynamics

U(1) � SL(2; C )

The associated principle �bre bundle

P (M;G

1

�G

2

)

of such interacting �eld theories can alternatively be expressed as a groupoid [8]. The are

several advantages of a groupoid formalism over that of a principle �bre bundle largely

due to the more general nature of the groupoid over that of the bundle description. For

reviews on groupoids and there potential applications to gauge theory see [9] and [10] and

references therein.

Brie
y, a groupoid 
 over a base X is a set (�;X) where � are the set of isomorphic

maps. � are the \elements" of the groupoid 
. In the literature � is sometimes called the

groupoid { however, in the present paper the groupoid will be denoted by 
. X is a set

of objects. The groupoid has two projection maps �,� : � ! X, called respectively the

source and target maps, and one object inclusion map � : X ! �. The main di�erence

between groups and groupoids is that only a partial composition is de�ned for groupoids,

that is,
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Consider a groupoid 
, with �xed point x 2 X, that is




x

= fz 2 � : such that �(z) = xg:

Now f


x

g
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,which denotes the collection of all 


x

as x varies over the base X, is a

principal �bre bundle. The 


x

are the �bres which are isomorphic to the structure group.

Thus a principal �bre bundle is actually a groupoid with a �bred point over which the

group structure is de�ned. The bundle projection map, which is usually denoted by � is

the � map.
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The starting point for the work which we are investigating is to construct a groupoid

Wilson line in 4-dimensional spacetime,

�[
] = P exp(�ig

Z

A
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d


�

) (23)

in which 
 is now an open as opposed to a closed path. The groupoid Wilson line is gauge

groupoid invariant without taking its trace, and thus avoids the subsequent information

loss associated with the conventional Wilson loop [11].

In distinction to the canonical nature in which the holonomies enter into Ashtekar's

general relativity we exploit the intrinsic path dependent nature associated with the

groupoid to construct a Feynman path integral in terms of groupoid Wilson lines. The

advantages of this approach are as follows:

{ other fundamental interaction such as electroweak forces and the strong force are eas-

ily introduced in combination with general relativity due to the natural capacity inherent

in groupoids to describe multiple group symmetries.

{ within the groupoid formalism quantum groups naturally occur, due to the open

structure of the nonlocal constituent variables. This reinforces the intimate relation be-

tween quantum groups and knot structure discovered in the holonomy loop representation

of general relativity.

{ quantisation is via path integrals and as such avoids the arti�cial spacetime split

inherent in the canonical approach.

4. Conclusion

Some of the areas we plan to further investigate with the proposed groupoid formalism are

the construction of nonperturbative versions of quantum �eld theories such as quantum

electrodynamics, electroweak theory and especially quantum gravity. Whether or not the

generalised gauge theory embodied via groupoids has experimentally veri�able results is

currently being explored in the context of the Casimir e�ect and the Lamb shift.
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